Exergy analysis and optimization of a hybrid cryocooler operating in 1–2 K based on the two-stage Joule-Thomson expansion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128314
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lukasz Szablowski & Piotr Krawczyk & Marcin Wolowicz, 2021. "Exergy Analysis of Adiabatic Liquid Air Energy Storage (A-LAES) System Based on Linde–Hampson Cycle," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the exergy analysis of the counter-flow dew point evaporative cooler," Energy, Elsevier, vol. 165(PB), pages 958-971.
- Chen, Hui & Liu, Ying-wen, 2021. "A new optimization concept of the recuperator based on Hampson-type miniature cryocoolers," Energy, Elsevier, vol. 224(C).
- Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
- Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
- Chiu, Chen-Hwa & Newton, Charles L., 1980. "Second law analysis in cryogenic processes," Energy, Elsevier, vol. 5(8), pages 899-904.
- Lee, Jisung & Baek, Seungwhan & Jeong, Sangkwon, 2018. "Investigation of the ejector application in the cryogenic Joule-Thomson refrigeration system," Energy, Elsevier, vol. 165(PB), pages 269-280.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
- Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
- Muhsin Kılıç & Ayse Fidan Altun, 2023. "Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
- Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
- Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
- Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
- Thomas, Rijo Jacob & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2012. "Application of exergy analysis in designing helium liquefiers," Energy, Elsevier, vol. 37(1), pages 207-219.
- Rostamzadeh, Hadi & Nourani, Pejman, 2019. "Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator," Energy, Elsevier, vol. 172(C), pages 675-690.
- Gholizadeh, Towhid & Vajdi, Mohammad & Rostamzadeh, Hadi, 2020. "A new trigeneration system for power, cooling, and freshwater production driven by a flash-binary geothermal heat source," Renewable Energy, Elsevier, vol. 148(C), pages 31-43.
- Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
- Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2022. "Performance of compressed air energy storage system under parallel operation mode of pneumatic motor," Renewable Energy, Elsevier, vol. 200(C), pages 185-217.
- Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
- Cao, Yan & Mihardjo, Leonardus WW. & Dahari, Mahidzal & Ghaebi, Hadi & Parikhani, Towhid & Mohamed, Abdeliazim Mustafa, 2021. "An innovative double-flash binary cogeneration cooling and power (CCP) system: Thermodynamic evaluation and multi-objective optimization," Energy, Elsevier, vol. 214(C).
- Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
- Wang, Ji-Xiang & Li, Yun-Ze & Li, Jia-Xin & Li, Chao & Xiong, Kai & Ning, Xian-Wen, 2018. "Enhanced heat transfer by an original immersed spray cooling system integrated with an ejector," Energy, Elsevier, vol. 158(C), pages 512-523.
- Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
- Zhang, Shaozhi & Luo, Jielin & Xu, Yiyang & Chen, Guangming & Wang, Qin, 2021. "Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator," Energy, Elsevier, vol. 220(C).
- Wu, Shiguang & Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Zhai, Yujia & Xue, Renjun & Tan, Han & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic study on throttling process of Joule-Thomson cooler to improve helium liquefaction performance between 2 K and 4 K," Energy, Elsevier, vol. 277(C).
More about this item
Keywords
Exergy analysis; Optimization; Hybrid cryocooler; 1–2 K; Two-stage JT expansion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017085. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.