IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp87-102.html
   My bibliography  Save this article

Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen

Author

Listed:
  • Ghaebi, Hadi
  • Yari, Mortaza
  • Gargari, Saeed Ghavami
  • Rostamzadeh, Hadi

Abstract

This paper aims to use waste heat of the biogas steam reforming (BSR) system for organic Rankine cycle (ORC) for simultaneous power and hydrogen production. A comprehensive thermodynamic modeling of the proposed combined system is carried out. In addition, optimization of the proposed system is conducted, using genetic algorithm (GA). Four different working fluids of R600, R245fa, R123, and R113 are used in ORC, where among all of them R600 is recommended due to its high performance and environment benefits. Using R600 as working fluid in ORC, results of the optimization demonstrated that the proposed system performs in an optimum state based on the selected objective functions when steam to carbon molar ratio, carbon dioxide to methane molar ratio, reaction pressure, reactor temperature, pump pressure ratio and pinch point temperature difference of the internal heat exchanger (IHE) are set in 2.99, 0.502, 1.004 bar, 998.85 K, 7.21 K, and 5.44 K, respectively. In this case, the optimum net output power, hydrogen production rate, energy efficiency and exergy efficiency are obtained 15.9 kW, 0.02529 kg s−1, 45.63%, and 74.89%, respectively. Moreover, the results of exergy analysis indicated that among all components, recuperator and reactor are accountable for the highest exergy destruction through the system. To better understand the effect of various parameters on performance of the system, a comprehensive parametric study of some key thermodynamic parameters on the main performance criteria is performed. It is concluded that the energy and exergy efficiencies of the combined BSR-ORC system can be increased by increasing steam to carbon molar ratio and pump pressure ratio or decreasing reaction pressure, carbon dioxide to methane molar ratio and pinch point temperature difference of the IHE.

Suggested Citation

  • Ghaebi, Hadi & Yari, Mortaza & Gargari, Saeed Ghavami & Rostamzadeh, Hadi, 2019. "Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen," Renewable Energy, Elsevier, vol. 130(C), pages 87-102.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:87-102
    DOI: 10.1016/j.renene.2018.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    2. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    3. Ghaebi, Hadi & Parikhani, Towhid & Rostamzadeh, Hadi & Farhang, Behzad, 2017. "Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles," Energy, Elsevier, vol. 139(C), pages 262-276.
    4. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
    5. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    6. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    7. Rahimpour, M.R. & Dehnavi, M.R. & Allahgholipour, F. & Iranshahi, D. & Jokar, S.M., 2012. "Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: A review," Applied Energy, Elsevier, vol. 99(C), pages 496-512.
    8. Taner, Tolga, 2018. "Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations," Energy, Elsevier, vol. 143(C), pages 284-294.
    9. Braga, Lúcia Bollini & Silveira, Jose Luz & da Silva, Marcio Evaristo & Tuna, Celso Eduardo & Machin, Einara Blanco & Pedroso, Daniel Travieso, 2013. "Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 166-173.
    10. Sun, Shaohui & Yan, Wei & Sun, Peiqin & Chen, Junwu, 2012. "Thermodynamic analysis of ethanol reforming for hydrogen production," Energy, Elsevier, vol. 44(1), pages 911-924.
    11. Yang, Xia, 2017. "An experimental investigation on the deactivation and regeneration of a steam reforming catalyst," Renewable Energy, Elsevier, vol. 112(C), pages 17-24.
    12. Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Hydrogen production and End-Uses from combined heat, hydrogen and power system by using local resources," Renewable Energy, Elsevier, vol. 71(C), pages 381-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    2. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    3. Soleymani, Elahe & Ghaebi, Hadi & Heydari, Amir & Javani, Nader, 2024. "Thermodynamic analysis and examining the effects of parameters in BSR-HDH system using response surface methodology," Renewable Energy, Elsevier, vol. 226(C).
    4. Leverone, Fiona & Pini, Matteo & Cervone, Angelo & Gill, Eberhard, 2020. "Solar energy harvesting on-board small satellites," Renewable Energy, Elsevier, vol. 159(C), pages 954-972.
    5. Soleymani, Elahe & Ghavami Gargari, Saeed & Ghaebi, Hadi, 2021. "Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC," Renewable Energy, Elsevier, vol. 177(C), pages 495-518.
    6. Zhang, Minglong & Chen, Hong & Zoghi, Mohammad & Habibi, Hamed, 2022. "Comparison between biogas and pure methane as the fuel of a polygeneration system including a regenerative gas turbine cycle and partial cooling supercritical CO2 Brayton cycle: 4E analysis and tri-ob," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 256-268.
    2. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    3. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    6. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    7. Du, Yang & Dai, Yiping, 2018. "Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle," Energy, Elsevier, vol. 161(C), pages 233-250.
    8. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    9. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    10. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    11. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    12. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    13. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    14. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    15. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    16. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    17. Hamad, Tarek A. & Agll, Abdulhakim A. & Hamad, Yousif M. & Bapat, Sushrut & Thomas, Mathew & Martin, Kevin B. & Sheffield, John W., 2014. "Study of a molten carbonate fuel cell combined heat, hydrogen and power system," Energy, Elsevier, vol. 75(C), pages 579-588.
    18. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    19. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    20. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:87-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.