IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224022151.html
   My bibliography  Save this article

Thermodynamic and economic analysis of multi-generation system based on LNG-LAES integrating with air separation unit

Author

Listed:
  • Wang, Zhikang
  • Li, Junxian
  • Li, Yihong
  • Fan, Xiaoyu
  • Gao, Zhaozhao
  • Ji, Wei
  • Chen, Liubiao
  • Wang, Junjie

Abstract

LNG consumption is rising globally, releasing significant cold energy during regasification. Coupling LNG vaporization with liquid air energy storage (LAES) maximizes this cold energy recovery, enhancing LAES efficiency. However, current LNG-LAES systems face issues like insufficient high-grade cold energy use and high liquid air temperatures. LAES's inability to recover LNG cold energy during energy release necessitates cold storage fluid, increasing costs. Safety concerns also arise from LNG and air coexisting in the same heat exchanger, and LNG vaporization fluctuations can destabilize LAES operations. This study proposes a multi-generation system (LNG-LAES-ASU) incorporating an air separation unit (ASU) to address these challenges. The ASU recovers LNG cold energy during energy release, adapts to LNG vaporization fluctuations, and reduces ASU energy consumption. Energy, economic, and peak-shaving performance analyses show the system achieves a 91.07 % round-trip efficiency (RTE). The ASU's average energy consumption is 0.1356–0.1506 kWh/Nm³ O₂, much lower than a standalone ASU's 0.4 kWh/Nm³ O₂. Over 30 years, the system yields a net present value (NPV) of $56,111,291 and a dynamic payback period of 3.23 years. Its peak-shaving capacity is 2.47–2.57 times greater than LNG-LAES alone. This research offers valuable insights into efficient LNG cold energy utilization.

Suggested Citation

  • Wang, Zhikang & Li, Junxian & Li, Yihong & Fan, Xiaoyu & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "Thermodynamic and economic analysis of multi-generation system based on LNG-LAES integrating with air separation unit," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022151
    DOI: 10.1016/j.energy.2024.132441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224022151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wencong & Xie, Shutao & Tan, Jiaqi & Ouyang, Tiancheng, 2022. "An integrated design of LNG cold energy recovery for supply demand balance using energy storage devices," Renewable Energy, Elsevier, vol. 183(C), pages 830-848.
    2. She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
    3. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    4. Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
    5. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    6. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    7. Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
    8. He, Xiufen & Liu, Yunong & Rehman, Ali & Wang, Li, 2022. "Feasibility and performance analysis of a novel air separation unit with energy storage and air recovery," Renewable Energy, Elsevier, vol. 195(C), pages 598-619.
    9. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    10. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    11. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    12. Kim, Juwon & Noh, Yeelyong & Chang, Daejun, 2018. "Storage system for distributed-energy generation using liquid air combined with liquefied natural gas," Applied Energy, Elsevier, vol. 212(C), pages 1417-1432.
    13. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    14. Wang, Kaiwen & Tong, Lige & Yin, Shaowu & Yang, Yan & Zhang, Peikun & Liu, Chuanping & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Novel ASU–LAES system with flexible energy release: Analysis of cycle performance, economics, and peak shaving advantages," Energy, Elsevier, vol. 288(C).
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    3. Yehia, Fatma & Al-Haimi, Akram Ali Nasser Mansoor & Byun, Yuree & Kim, Junseok & Yun, Yesom & Lee, Gahyeon & Yu, Seoyeon & Yang, Chao & Liu, Lihua & Qyyum, Muhammad Abdul & Hwang, Jihyun, 2024. "Integration of the single-effect mixed refrigerant cycle with liquified air energy storage and cold energy of LNG regasification: Energy, exergy, and efficiency prospectives," Energy, Elsevier, vol. 306(C).
    4. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    5. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    6. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    7. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    8. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    9. He, Xiufen & Liu, Yunong & Rehman, Ali & Wang, Li, 2021. "A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis," Applied Energy, Elsevier, vol. 281(C).
    10. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
    12. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    14. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    15. Liu, Yuxin & Yu, Dongling & Tong, Lige & Zhang, Peikun & Guo, Wei & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Improved liquid air energy storage process considering air purification: Continuous and flexible energy storage and power generation," Renewable Energy, Elsevier, vol. 231(C).
    16. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    17. Wang, Kaiwen & Tong, Lige & Yin, Shaowu & Yang, Yan & Zhang, Peikun & Liu, Chuanping & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Novel ASU–LAES system with flexible energy release: Analysis of cycle performance, economics, and peak shaving advantages," Energy, Elsevier, vol. 288(C).
    18. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    19. Rehman, Ali & Qyyum, Muhammad Abdul & Qadeer, Kinza & Zakir, Fatima & Ding, Yulong & Lee, Moonyong & Wang, Li, 2020. "Integrated biomethane liquefaction using exergy from the discharging end of a liquid air energy storage system," Applied Energy, Elsevier, vol. 260(C).
    20. He, Xiufen & Guo, Wei & Liu, Yunong & Zuo, Zhongqi & Wang, Li, 2024. "Utmost substance recovery and utilization for integrated technology of air separation unit and liquid air energy storage and its saving benefits," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.