IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp727-739.html
   My bibliography  Save this article

Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications

Author

Listed:
  • Dzido, Aleksandra
  • Krawczyk, Piotr
  • Wołowicz, Marcin
  • Badyda, Krzysztof

Abstract

The dynamic growth of renewables in national power systems is driving the development of energy storage technologies. Power and storage capacity should correspond to system-scale requirements in the field of power and capacity. One such technology is liquid air energy storage. As the main energy expenditures in this system are related to the liquefaction module, authors focused their research on analysis of the advanced liquefaction modules. The six most common liquefaction sections were considered. Depending on the regasification section pressure, various amounts of cold media can be obtained, stored, and used during liquid air energy storage system charging mode. Mathematical modelling results show that when the regasification section pressure is below 100 bar, the type of liquefaction system used has no significant influence on the unit energy expenditures of liquefaction section. Since additional air cooling is desired for higher pressure values, appropriate choice of liquefaction system type can minimise unit energy expenditures for air condensation. One of the main parameters from the efficiency point of view is the temperature before the throttling valve, as lower values contribute to a reduction in recirculated flow, leading to lower power demands for compressors. The highest efficiencies for almost all considered cases were reported for the Kapitza system: 57.72% for 100 bar regasification pressure. Importantly, the Kapitza and Heylandt systems retain good efficiency with higher regasification pressures, until 160 bar. For the other cases, the discrepancies between efficiencies for 100 bar and 160 bar are significant. The highest difference was observed for the simplest system – Linde-Hampson – where the efficiency drop exceeds 12%. For the best analysed system (Kapitza) exergy analysis were leaded. The main single component exergy destruction was reported for the Joule-Thompson valve (25.56%), which is related with isenthalpic throttling of air. In general, the highest share of exergy destruction in the system occurs in the heat exchangers (26.15% in total).

Suggested Citation

  • Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:727-739
    DOI: 10.1016/j.renene.2021.11.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    3. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    4. Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
    5. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    6. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    7. Krawczyk, Piotr & Szabłowski, Łukasz & Karellas, Sotirios & Kakaras, Emmanuel & Badyda, Krzysztof, 2018. "Comparative thermodynamic analysis of compressed air and liquid air energy storage systems," Energy, Elsevier, vol. 142(C), pages 46-54.
    8. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    9. Sarah Hamdy & Francisco Moser & Tatiana Morosuk & George Tsatsaronis, 2019. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage," Energies, MDPI, vol. 12(3), pages 1-19, February.
    10. Jidai Wang & Kunpeng Lu & Lan Ma & Jihong Wang & Mark Dooner & Shihong Miao & Jian Li & Dan Wang, 2017. "Overview of Compressed Air Energy Storage and Technology Development," Energies, MDPI, vol. 10(7), pages 1-22, July.
    11. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
    12. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    13. Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
    14. Lukasz Szablowski & Piotr Krawczyk & Marcin Wolowicz, 2021. "Exergy Analysis of Adiabatic Liquid Air Energy Storage (A-LAES) System Based on Linde–Hampson Cycle," Energies, MDPI, vol. 14(4), pages 1-16, February.
    15. Morgan, Robert & Nelmes, Stuart & Gibson, Emma & Brett, Gareth, 2015. "Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant," Applied Energy, Elsevier, vol. 137(C), pages 845-853.
    16. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    17. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    18. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    19. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    20. Liu, Junxia, 2019. "China's renewable energy law and policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 212-219.
    21. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    22. Legrand, Mathieu & Rodríguez-Antón, Luis Miguel & Martinez-Arevalo, Carmen & Gutiérrez-Martín, Fernando, 2019. "Integration of liquid air energy storage into the spanish power grid," Energy, Elsevier, vol. 187(C).
    23. Indre Siksnelyte-Butkiene & Edmundas Kazimieras Zavadskas & Dalia Streimikiene, 2020. "Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review," Energies, MDPI, vol. 13(5), pages 1-22, March.
    24. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    25. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    26. She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    27. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    28. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    29. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    30. Dario Maradin, 2021. "Advantages and Disadvantages of Renewable Energy Sources Utilization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 176-183.
    31. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    3. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    4. Muhsin Kılıç & Ayse Fidan Altun, 2023. "Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    5. Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2022. "Performance of compressed air energy storage system under parallel operation mode of pneumatic motor," Renewable Energy, Elsevier, vol. 200(C), pages 185-217.
    6. Ding, Xingqi & Duan, Liqiang & Li, Da & Ji, Shuaiyu & Yang, Libo & Zheng, Nan & Zhou, Yufei, 2024. "Dynamic characteristics of a novel liquid air energy storage system coupled with solar heat and waste heat recovery," Renewable Energy, Elsevier, vol. 221(C).
    7. Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Xue, Renjun & Tan, Han & Wu, Shiguang & Zhai, Yujia & Wu, Dirui & Ma, Dong & Dang, Haizheng, 2023. "Exergy analysis and optimization of a hybrid cryocooler operating in 1–2 K based on the two-stage Joule-Thomson expansion," Energy, Elsevier, vol. 281(C).
    8. Chaitanya, Vuppanapalli & Narasimhan, S. & Venkatarathnam, G., 2023. "Optimization of a Solvay cycle-based liquid air energy storage system," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
    5. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    6. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    7. Park, Jinwoo & Qi, Meng & Kim, Jeongdong & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2020. "Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy," Energy, Elsevier, vol. 207(C).
    8. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    9. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    10. Wang, Kaiwen & Tong, Lige & Yin, Shaowu & Yang, Yan & Zhang, Peikun & Liu, Chuanping & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2024. "Novel ASU–LAES system with flexible energy release: Analysis of cycle performance, economics, and peak shaving advantages," Energy, Elsevier, vol. 288(C).
    11. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    12. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    13. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    14. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    15. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    16. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    17. Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
    18. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    19. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    20. Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:727-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.