IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123008340.html
   My bibliography  Save this article

Liquid air energy storage system based on fluidized bed heat transfer

Author

Listed:
  • Fan, Xiaoyu
  • Guo, Luna
  • Ji, Wei
  • Chen, Liubiao
  • Wang, Junjie

Abstract

Liquid air energy storage (LAES) is a large-scale energy storage technology that has gained wide popularity due to its ability to integrate renewable energy into the power grid. Efficient cold/heat energy storage, which currently mainly includes solid-phase packed beds and liquid-phase fluids, is essential for the LAES system. However, the current heat/cold energy storage methods have limitations, such as the risk of flammability and explosion, the dynamic effect of the thermocline, and expensive investment. To address these limitations, a novel LAES based on fluidized bed heat transfer (FB-LAES) is proposed, and quartz sand is adopted as the heat/cold energy storage material. A thermodynamic model is developed, and the effects of heat exchanger design conditions and fluidization parameters on system performance are investigated, which indicates that the lower air-side/particle-side pressure drop and higher particle transport coefficient (PTC) favor the efficiency improvement of the FB-LAES system. The comparison demonstrates that the round-trip efficiency (RTE) of the FB-LAES system can reach 58.76% without stringent design conditions, while the RTE of the LAES system with traditional solid-phase (packed bed) and liquid-phase (methanol and propane) cold energy storage are 48.76% and 57.46%, respectively.

Suggested Citation

  • Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008340
    DOI: 10.1016/j.renene.2023.118928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
    3. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    4. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    5. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
    7. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    8. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Karimi, Ali & Kalavani, Farshid, 2019. "Stochastic optimal sizing of integrated cryogenic energy storage and air liquefaction unit in microgrid," Renewable Energy, Elsevier, vol. 136(C), pages 15-22.
    9. Morgan, Robert & Nelmes, Stuart & Gibson, Emma & Brett, Gareth, 2015. "Liquid air energy storage – Analysis and first results from a pilot scale demonstration plant," Applied Energy, Elsevier, vol. 137(C), pages 845-853.
    10. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    12. Reyes-Belmonte, M.A. & Sebastián, A. & Spelling, J. & Romero, M. & González-Aguilar, J., 2019. "Annual performance of subcritical Rankine cycle coupled to an innovative particle receiver solar power plant," Renewable Energy, Elsevier, vol. 130(C), pages 786-795.
    13. Cui, Shuangshuang & He, Qing & Shi, Xingping & Liu, Yixue & Du, Dongmei, 2021. "Dynamic characteristics analysis for energy release process of liquid air energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 744-755.
    14. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    17. Xie, Xiangyu & Xu, Haoran & Gan, Di & Ni, Mingjiang & Yan, Jianhua & Cen, Kefa & Xiao, Gang, 2022. "A sliding-bed particle solar receiver with controlling particle flow velocity for high-temperature thermal power generation," Renewable Energy, Elsevier, vol. 183(C), pages 41-50.
    18. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    20. Gomez-Garcia, Fabrisio & Gauthier, Daniel & Flamant, Gilles, 2017. "Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage," Applied Energy, Elsevier, vol. 190(C), pages 510-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xiaoyu & Ji, Wei & Li, Junxian & Gao, Zhaozhao & Chen, Liubiao & Wang, Junjie, 2024. "Advancing liquid air energy storage with moving packed bed: Development and analysis from components to system level," Applied Energy, Elsevier, vol. 355(C).
    2. Dias Raybekovich Umyshev & Eduard Vladislavovich Osipov & Andrey Anatolievich Kibarin & Maxim Sergeyevich Korobkov & Yuriy Viktorovich Petukhov, 2024. "Analysis of Liquid Air Energy Storage System with Organic Rankine Cycle and Heat Regeneration System," Sustainability, MDPI, vol. 16(13), pages 1-15, June.
    3. Ding, Xingqi & Zhou, Yufei & Zheng, Nan & Desideri, Umberto & Duan, Liqiang, 2024. "Emergy analysis and comprehensive sustainability investigation of a solar-aided liquid air energy storage system based on life cycle assessment," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Fan, Xiaoyu & Ji, Wei & Li, Junxian & Gao, Zhaozhao & Chen, Liubiao & Wang, Junjie, 2024. "Advancing liquid air energy storage with moving packed bed: Development and analysis from components to system level," Applied Energy, Elsevier, vol. 355(C).
    4. Chaitanya, Vuppanapalli & Narasimhan, S. & Venkatarathnam, G., 2023. "Optimization of a Solvay cycle-based liquid air energy storage system," Energy, Elsevier, vol. 283(C).
    5. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    6. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    7. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    8. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    9. Cárdenas, Bruno & Swinfen-Styles, Lawrie & Rouse, James & Hoskin, Adam & Xu, Weiqing & Garvey, S.D., 2021. "Energy storage capacity vs. renewable penetration: A study for the UK," Renewable Energy, Elsevier, vol. 171(C), pages 849-867.
    10. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    11. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    13. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    14. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
    15. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    16. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    17. Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
    18. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    19. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    20. Hüttermann, Lars & Span, Roland, 2019. "Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems," Energy, Elsevier, vol. 174(C), pages 236-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.