Prediction of drilling fluid lost-circulation zone based on deep learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127495
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Mou & Li, Xiaoxiao & Deng, Jianmin & Meng, Yingfeng & Li, Gao, 2015. "Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions," Energy, Elsevier, vol. 91(C), pages 1018-1029.
- Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
- Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
- Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
- Xu, Chengyuan & Yan, Xiaopeng & Kang, Yili & You, Lijun & You, Zhenjiang & Zhang, Hao & Zhang, Jingyi, 2019. "Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir," Energy, Elsevier, vol. 174(C), pages 1012-1025.
- Xu, Chengyuan & Xie, Zhichao & Kang, Yili & Yu, Guoyi & You, Zhenjiang & You, Lijun & Zhang, Jingyi & Yan, Xiaopeng, 2020. "A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir," Energy, Elsevier, vol. 210(C).
- Kang, Yili & Zhou, Hexiang & Xu, Chengyuan & Yang, Xinglin & You, Zhenjiang, 2023. "Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing," Energy, Elsevier, vol. 262(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shakouri, Sina & Mohammadzadeh-Shirazi, Maysam, 2023. "Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods," Energy, Elsevier, vol. 285(C).
- Xu, Chengyuan & Zhang, Honglin & She, Jiping & Jiang, Guobin & Peng, Chi & You, Zhenjiang, 2023. "Experimental study on fracture plugging effect of irregular-shaped lost circulation materials," Energy, Elsevier, vol. 276(C).
- Li, Fuli & Yan, Wei & Kong, Xianyong & Li, Juan & Zhang, Wei & Kang, Zeze & Yang, Tao & Tang, Qing & Wang, Kongyang & Tan, Chaodong, 2024. "Study on multi-factor casing damage prediction method based on machine learning," Energy, Elsevier, vol. 296(C).
- Guo, Junyu & Wan, Jia-Lun & Yang, Yan & Dai, Le & Tang, Aimin & Huang, Bangkui & Zhang, Fangfang & Li, He, 2023. "A deep feature learning method for remaining useful life prediction of drilling pumps," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Chengyuan & Zhang, Honglin & She, Jiping & Jiang, Guobin & Peng, Chi & You, Zhenjiang, 2023. "Experimental study on fracture plugging effect of irregular-shaped lost circulation materials," Energy, Elsevier, vol. 276(C).
- Xu, Chengyuan & Xie, Zhichao & Kang, Yili & Yu, Guoyi & You, Zhenjiang & You, Lijun & Zhang, Jingyi & Yan, Xiaopeng, 2020. "A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir," Energy, Elsevier, vol. 210(C).
- Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
- Kang, Yili & Zhou, Hexiang & Xu, Chengyuan & Yang, Xinglin & You, Zhenjiang, 2023. "Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing," Energy, Elsevier, vol. 262(PA).
- Yang, Xianyu & Xie, Jingyu & Ye, Xiaoping & Chen, Shuya & Jiang, Guosheng & Cai, Jihua & Shi, Yanping & Yue, Ye & Xue, Man & Dai, Zhaokai & Fang, Changliang, 2023. "Sealing characteristics and discrete element fluid dynamics analysis of nanofiber in nanoscale shale pores: Modeling and prediction," Energy, Elsevier, vol. 273(C).
- Chengwang Wang & Zixi Guo & Lifeng Zhang & Yunwei Kang & Zhenjiang You & Shuguang Li & Yubin Wang & Huaibin Zhen, 2022. "3D Fracture Propagation Simulation and Pressure Decline Analysis Research for I-Shaped Fracture of Coalbed," Energies, MDPI, vol. 15(16), pages 1-20, August.
- Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
- Wang, Lian & Yao, Yuedong & Wang, Kongjie & Adenutsi, Caspar Daniel & Zhao, Guoxiang & Lai, Fengpeng, 2022. "Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs," Energy, Elsevier, vol. 243(C).
- Liu, Hao & Su, Guandong & Okere, Chinedu J. & Li, Guozhang & Wang, Xiangchun & Cai, Yuzhe & Wu, Tong & Zheng, Lihui, 2022. "Working fluid-induced formation damage evaluation for commingled production of multi-layer natural gas reservoirs with flow rate method," Energy, Elsevier, vol. 239(PB).
- Li, Qixian & Xu, Jiang & Shu, Longyong & Yan, Fazhi & Pang, Bo & Peng, Shoujian, 2023. "Exploration of the induced fluid-disturbance effect in CBM co-production in a superimposed pressure system," Energy, Elsevier, vol. 265(C).
- Jianmeng Sun & Ping Feng & Peng Chi & Weichao Yan, 2022. "Microscopic Conductivity Mechanism and Saturation Evaluation of Tight Sandstone Reservoirs: A Case Study from Bonan Oilfield, China," Energies, MDPI, vol. 15(4), pages 1-27, February.
- Naser Golsanami & Bin Gong & Sajjad Negahban, 2022. "Evaluating the Effect of New Gas Solubility and Bubble Point Pressure Models on PVT Parameters and Optimizing Injected Gas Rate in Gas-Lift Dual Gradient Drilling," Energies, MDPI, vol. 15(3), pages 1-25, February.
- Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
- Bo Feng & Jin Li & Zaoyuan Li & Xuning Wu & Jian Liu & Sheng Huang & Jinfei Sun, 2023. "Enhancing Environmental Protection in Oil and Gas Wells through Improved Prediction Method of Cement Slurry Temperature," Energies, MDPI, vol. 16(13), pages 1-17, June.
- Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
- Ge, Jiachao & Zhang, Xiaozhou & Le-Hussain, Furqan, 2022. "Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration," Energy, Elsevier, vol. 239(PC).
- Mikhail Dvoynikov & Dmitry Sidorov & Evgeniy Kambulov & Frederick Rose & Rustem Ahiyarov, 2022. "Salt Deposits and Brine Blowout: Development of a Cross-Linking Composition for Blocking Formations and Methodology for Its Testing," Energies, MDPI, vol. 15(19), pages 1-20, October.
- Xiaolong Guo & Bin Yan & Juyi Zeng & Guangzhi Zhang & Lin Li & You Zhou & Rui Yang, 2022. "Seismic Anisotropic Fluid Identification in Fractured Carbonate Reservoirs," Energies, MDPI, vol. 15(19), pages 1-15, September.
- Mao, Liangjie & Wei, Changjiang & Jia, Hai & Lu, Kechong, 2023. "Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters," Energy, Elsevier, vol. 284(C).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
More about this item
Keywords
Lost circulation; Lost-circulation zone prediction; Deep learning; BP neural network; Convolutional neural network; Capsule network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223008897. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.