IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032339.html
   My bibliography  Save this article

Exploration of the induced fluid-disturbance effect in CBM co-production in a superimposed pressure system

Author

Listed:
  • Li, Qixian
  • Xu, Jiang
  • Shu, Longyong
  • Yan, Fazhi
  • Pang, Bo
  • Peng, Shoujian

Abstract

Fluid disturbance in coalbed methane co-production in a superimposed pressure system is universal. Two sets of tests were conducted with different constant outlet pressure values and reservoir pressure gradients to explore the fluid-disturbance characteristics. First, in the constant outlet pressure mode, reservoirs with large differences in the initial fluid energy are prone to fluid disturbance in the early stage of co-production, and the dynamic pressure balance drives part of the fluid from reservoirs with a high initial fluid energy to flow to reservoirs with a low initial fluid energy. Second, an increase in the constant outlet pressure value reduces the intensity of the fluid disturbance, and the reservoir pressure gradient has a positive effect on the fluid-disturbance effect. The design of a constant-pressure co-production must incorporate disturbance-reduction measures and appropriately increase the constant outlet pressure at the wellbore outlet. Alternatively, reservoirs with smaller reservoir pressures should be selected for co-production. Third, the gas-production mode of a single reservoir under the constant-pressure co-production can be separated into three major categories and seven subcategories: the conventional mode is applicable to reservoirs with a high initial fluid energy, the inhibition mode is primarily for reservoirs with a medium-low initial fluid energy, and the backflow mode is primarily for reservoirs with a low initial fluid energy.

Suggested Citation

  • Li, Qixian & Xu, Jiang & Shu, Longyong & Yan, Fazhi & Pang, Bo & Peng, Shoujian, 2023. "Exploration of the induced fluid-disturbance effect in CBM co-production in a superimposed pressure system," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032339
    DOI: 10.1016/j.energy.2022.126347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    2. Liu, Hao & Su, Guandong & Okere, Chinedu J. & Li, Guozhang & Wang, Xiangchun & Cai, Yuzhe & Wu, Tong & Zheng, Lihui, 2022. "Working fluid-induced formation damage evaluation for commingled production of multi-layer natural gas reservoirs with flow rate method," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Shuyi & Wang, Meizhu & Yang, Jiaosheng & Zhao, Yang & Wang, Jiulong & Yue, Ming & Xie, Chiyu & Song, Hongqing, 2023. "An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning," Energy, Elsevier, vol. 282(C).
    2. Chengwang Wang & Zixi Guo & Lifeng Zhang & Yunwei Kang & Zhenjiang You & Shuguang Li & Yubin Wang & Huaibin Zhen, 2022. "3D Fracture Propagation Simulation and Pressure Decline Analysis Research for I-Shaped Fracture of Coalbed," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Zhang, Baoxin & Deng, Ze & Fu, Xuehai & Yu, Kun & Zeng, Fanhua (Bill), 2023. "An experimental study on the effects of acidization on coal permeability: Implications for the enhancement of coalbed methane production," Energy, Elsevier, vol. 280(C).
    4. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
    5. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).
    6. Wen, Hu & Yan, Li & Jin, Yongfei & Wang, Zhipeng & Guo, Jun & Deng, Jun, 2023. "Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning," Energy, Elsevier, vol. 264(C).
    7. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
    8. Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
    9. Wang, Kai & Gong, Haoran & Wang, Gongda & Yang, Xin & Xue, Haiteng & Du, Feng & Wang, Zhie, 2024. "N2 injection to enhance gas drainage in low-permeability coal seam: A field test and the application of deep learning algorithms," Energy, Elsevier, vol. 290(C).
    10. Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
    11. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).
    12. Du, Shuyi & Wang, Jiulong & Wang, Meizhu & Yang, Jiaosheng & Zhang, Cong & Zhao, Yang & Song, Hongqing, 2023. "A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns," Energy, Elsevier, vol. 263(PE).
    13. Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.