IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028585.html
   My bibliography  Save this article

Formation mechanism and strengthening method of geometric-mechanical structure of plugging zone in deep naturally fractured reservoir

Author

Listed:
  • Xu, Chengyuan
  • Zhang, Honglin
  • Fu, Jianhong
  • Kang, Yili
  • You, Zhenjiang

Abstract

Efficient fracture plugging plays a critical role during drilling and completion of deep naturally fractured reservoirs, minimizing fluid loss, and ensuring reservoir protection. This study investigates the formation process of the geometric-mechanical structure of fracture plugging zones through a series of experiments including microscopic visualization, photoelastic and fracture plugging experiments. By examining these experiments, we reveal the relationship between lost circulation materials (LCMs) at the micro-scale, force chain network structures at the meso-scale, and the pressure stability of plugging zones at the macro-scale. Based on the analytic hierarchy process (AHP), we introduce an evaluation index for assessing the stability of fracture plugging zones and define methods to strengthen their stability. The experimental results show that a synergistic combination of granular and flaky materials, along with fibers, can establish fracture plugging zones with high bearing capacity. Granular materials are distributed throughout the fracture plugging zone structure, flaky materials dominate the front and middle sections, and fibrous materials are prevalent in the middle and end sections. Furthermore, the selection of different types of LCMs and consideration of their characteristic parameters, such as particle size, sphericity and friction coefficient, significantly affect the force chain network structure within the plugging zone. This, in turn, manifests in the pressure stability of the plugging zone. We conduct a comprehensive evaluation based on the multi-scale characteristic parameters of the plugging zone: properties of LCMs, force chain parameters (strong chains ratio and average shear strength), evaluation indexes of bearing stability (plugging pressure-bearing capacity, cumulative loss and pressure-bearing stability time). These assessments yield valuable insights into the pressure-bearing stability of plugging zone and allow for LCM optimization. The field application demonstrates the effectiveness of our optimized plugging formula in enhancing the bearing stability of fracture plugging zones and controlling working fluid loss in deep fractured reservoirs.

Suggested Citation

  • Xu, Chengyuan & Zhang, Honglin & Fu, Jianhong & Kang, Yili & You, Zhenjiang, 2024. "Formation mechanism and strengthening method of geometric-mechanical structure of plugging zone in deep naturally fractured reservoir," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028585
    DOI: 10.1016/j.energy.2024.133083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.