A novel domain adaptation method with physical constraints for shale gas production forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123673
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
- Kung-Jeng Wang & Diwanda Ageng Rizqi & Hong-Phuc Nguyen, 2021. "Skill transfer support model based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1129-1146, April.
- Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Du, Shuyi & Wang, Meizhu & Yang, Jiaosheng & Zhao, Yang & Wang, Jiulong & Yue, Ming & Xie, Chiyu & Song, Hongqing, 2023. "An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning," Energy, Elsevier, vol. 282(C).
- Yi, Jun & Qi, ZhongLi & Li, XiangChengZhen & Liu, Hong & Zhou, Wei, 2024. "Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China," Applied Energy, Elsevier, vol. 357(C).
- Marcelle Chauvet & Rafael R. S. Guimaraes, 2021. "Transfer Learning for Business Cycle Identification," Working Papers Series 545, Central Bank of Brazil, Research Department.
- Niu, Wente & Sun, Yuping & Zhang, Xiaowei & Lu, Jialiang & Liu, Hualin & Li, Qiaojing & Mu, Ying, 2023. "An ensemble transfer learning strategy for production prediction of shale gas wells," Energy, Elsevier, vol. 275(C).
- Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
- Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
- Wang, Ke & Li, Haitao & Wang, Junchao & Jiang, Beibei & Bu, Chengzhong & Zhang, Qing & Luo, Wei, 2017. "Predicting production and estimated ultimate recoveries for shale gas wells: A new methodology approach," Applied Energy, Elsevier, vol. 206(C), pages 1416-1431.
- Chi Wing Chu & Tony Sit & Gongjun Xu, 2021. "Transformed Dynamic Quantile Regression on Censored Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 874-886, April.
- Gao, Yuan & Hu, Zehuan & Shi, Shanrui & Chen, Wei-An & Liu, Mingzhe, 2024. "Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan," Applied Energy, Elsevier, vol. 359(C).
- Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
- Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
- , Yangriani, 2021. "Yangriani - Managing Digital Transformation - GSLC 1," OSF Preprints 4btj6, Center for Open Science.
- Nguyen-Le, Viet & Shin, Hyundon, 2022. "Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters," Energy, Elsevier, vol. 244(PB).
- , Darmadi & Sari, Ratna, 2021. "Gaya Kepemimpinan Transformasional dan Motivasi Kerja," Thesis Commons 8zeh9, Center for Open Science.
- Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
- Jonah Busch & Irene Ring & Monique Akullo & Oyut Amarjargal & Maud Borie & Rodrigo S. Cassola & Annabelle Cruz-Trinidad & Nils Droste & Joko Tri Haryanto & Ulan Kasymov & Nataliia Viktorivna Kotenko &, 2021. "A global review of ecological fiscal transfers," Nature Sustainability, Nature, vol. 4(9), pages 756-765, September.
- Kun Wang & Christopher W. Johnson & Kane C. Bennett & Paul A. Johnson, 2021. "Predicting fault slip via transfer learning," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
- Shi, Jian & Teh, Jiashen, 2024. "Load forecasting for regional integrated energy system based on complementary ensemble empirical mode decomposition and multi-model fusion," Applied Energy, Elsevier, vol. 353(PB).
- Zebin Hu & Hao Liu & Zhendong Li & Zekuan Yu & Long Wang, 2021. "Cross-Model Transformer Method for Medical Image Synthesis," Complexity, Hindawi, vol. 2021, pages 1-7, October.
- Lim, Bryan & Arık, Sercan Ö. & Loeff, Nicolas & Pfister, Tomas, 2021. "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1748-1764.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Hocke, Simone & Klee, Andreas, 2023. "Transformation in der Arbeitswelt gestalten: Welchen Beitrag leistet eine akademische Weiterbildung von Betriebs- und Personalräten?," Working Paper Forschungsförderung 309, Hans-Böckler-Stiftung, Düsseldorf.
- Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
- Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
- Yang, Dongchuan & Li, Mingzhu & Guo, Ju-e & Du, Pei, 2024. "An attention-based multi-input LSTM with sliding window-based two-stage decomposition for wind speed forecasting," Applied Energy, Elsevier, vol. 375(C).
- Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
- Zhang, Mingyue & Han, Yang & Wang, Chaoyang & Yang, Ping & Wang, Congling & Zalhaf, Amr S., 2024. "Ultra-short-term photovoltaic power prediction based on similar day clustering and temporal convolutional network with bidirectional long short-term memory model: A case study using DKASC data," Applied Energy, Elsevier, vol. 375(C).
- Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
- Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
- Shi, Wenrui & Zhang, Chaomo & Jiang, Shu & Liao, Yong & Shi, Yuanhui & Feng, Aiguo & Young, Steven, 2022. "Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field," Energy, Elsevier, vol. 254(PB).
- Gao, Yuan & Hu, Zehuan & Chen, Wei-An & Liu, Mingzhe, 2024. "Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning," Energy, Elsevier, vol. 302(C).
- Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
- Wang, Jun & Cao, Junxing, 2024. "Reservoir properties inversion using attention-based parallel hybrid network integrating feature selection and transfer learning," Energy, Elsevier, vol. 304(C).
- Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
- Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
- Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).
- Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
More about this item
Keywords
Shale gas; Production forecasting; Transfer learning; Domain adaption; Physical constraint; Interpretability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010560. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.