Study on multi-factor casing damage prediction method based on machine learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131044
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
- Trizoglou, Pavlos & Liu, Xiaolei & Lin, Zi, 2021. "Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 945-962.
- Choi, Yosoon & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung, 2022. "Optimization of haulage-truck system performance for ore production in open-pit mines using big data and machine learning-based methods," Resources Policy, Elsevier, vol. 75(C).
- Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pan, Lin & Xiong, Yong & Zhu, Ze & Wang, Leichong, 2022. "Research on variable pitch control strategy of direct-driven offshore wind turbine using KELM wind speed soft sensor," Renewable Energy, Elsevier, vol. 184(C), pages 1002-1017.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
- Xu, Chengyuan & Zhang, Honglin & She, Jiping & Jiang, Guobin & Peng, Chi & You, Zhenjiang, 2023. "Experimental study on fracture plugging effect of irregular-shaped lost circulation materials," Energy, Elsevier, vol. 276(C).
- Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Huang, Xiaohui & Huang, Qi & Cao, Huajun & Yan, Wanbin & Cao, Le & Zhang, Qiongzhi, 2023. "Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application," Energy, Elsevier, vol. 263(PA).
- Yong, Weixun & Zhang, Wengang & Nguyen, Hoang & Bui, Xuan-Nam & Choi, Yosoon & Nguyen-Thoi, Trung & Zhou, Jian & Tran, Trung Tin, 2022. "Analysis and prediction of diaphragm wall deflection induced by deep braced excavations using finite element method and artificial neural network optimized by metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Jianmeng Sun & Ping Feng & Peng Chi & Weichao Yan, 2022. "Microscopic Conductivity Mechanism and Saturation Evaluation of Tight Sandstone Reservoirs: A Case Study from Bonan Oilfield, China," Energies, MDPI, vol. 15(4), pages 1-27, February.
- Naser Golsanami & Bin Gong & Sajjad Negahban, 2022. "Evaluating the Effect of New Gas Solubility and Bubble Point Pressure Models on PVT Parameters and Optimizing Injected Gas Rate in Gas-Lift Dual Gradient Drilling," Energies, MDPI, vol. 15(3), pages 1-25, February.
- Shakouri, Sina & Mohammadzadeh-Shirazi, Maysam, 2023. "Modeling of asphaltic sludge formation during acidizing process of oil well reservoir using machine learning methods," Energy, Elsevier, vol. 285(C).
- Han, Dongho & Kwon, Sanguk & Lee, Miyoung & Kim, Jonghoon & Yoo, Kisoo, 2023. "Electrochemical impedance spectroscopy image transformation-based convolutional neural network for diagnosis of external environment classification affecting abnormal aging of Li-ion batteries," Applied Energy, Elsevier, vol. 345(C).
- Xiaolong Guo & Bin Yan & Juyi Zeng & Guangzhi Zhang & Lin Li & You Zhou & Rui Yang, 2022. "Seismic Anisotropic Fluid Identification in Fractured Carbonate Reservoirs," Energies, MDPI, vol. 15(19), pages 1-15, September.
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Guo, Junyu & Wan, Jia-Lun & Yang, Yan & Dai, Le & Tang, Aimin & Huang, Bangkui & Zhang, Fangfang & Li, He, 2023. "A deep feature learning method for remaining useful life prediction of drilling pumps," Energy, Elsevier, vol. 282(C).
- Pengchao Zhang & Xiang Liu & Zebang Yi & Qiuzhi He, 2024. "Improved Multi-Objective Beluga Whale Optimization Algorithm for Truck Scheduling in Open-Pit Mines," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
- Mingzhu Tang & Zixin Liang & Huawei Wu & Zimin Wang, 2021. "Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF," Energies, MDPI, vol. 14(19), pages 1-13, October.
- Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).
- Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
More about this item
Keywords
Casing damage prediction; Multi-factor coupling; Model selection; Machine learning; Sensitivity analysis; Preventive measures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008168. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.