IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224018607.html
   My bibliography  Save this article

Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection

Author

Listed:
  • Nassabeh, Mehdi
  • You, Zhenjiang
  • Keshavarz, Alireza
  • Iglauer, Stefan

Abstract

This study introduces an innovative data-driven and machine-learning framework designed to accurately predict site scores in the site screening study for specific offshore CO2 storage sites. The framework seamlessly integrates diverse sub-surface geospatial data sources with human aided expert-weighted criteria, thereby providing a high-resolution screening tool. Tailored to accommodate varying data accessibility and the significance of criteria, this approach considers both technical and non-technical factors. Its purpose is to facilitate the identification of priority locations for projects associated with Carbon Capture, Utilization, and Storage (CCUS). Through aggregating and analyzing geospatial datasets, the study employs machine learning algorithms and an expert-weighted model to identify suitable geologic CCUS regions. This process adheres to stringent safety, risk control, and environmental guidelines, addressing situations where human analysis may fail to recognize patterns and provide detailed insights in suitable site screening techniques. The primary emphasis of this research is to bridge the gap between scientific inquiry and practical application, facilitating informed decision-making in the implementation of CCUS projects. Rigorous assessments encompassing geological, oceanographic, and eco-sensitivity metrics contribute valuable insights for policymakers and industry leaders. To ensure the accuracy, efficiency, and scalability of the established offshore CO2 storage facilities, the proposed machine learning approach undergoes benchmarking. This comprehensive evaluation includes the utilization of machine learning algorithms such as Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multilayer Extreme Learning Machine (MLELM), and Deep Neural Network (DNN) for predicting more suitable site scores. Among these algorithms, the DNN algorithm emerges as the most effective in site score prediction. The strengths of the DNN algorithm encompass nonlinear modeling, feature learning, scale invariance, handling high-dimensional data, end-to-end learning, transfer learning, representation learning, and parallel processing. The evaluation results of the DNN algorithm demonstrate high accuracy in the testing subset, with values of AAPD (Average Absolute Percentage Difference) = 1.486 %, WAAPD (Weighted Average Absolute Percentage Difference) = 0.0149 %, VAF (Variance Accounted For) = 0.9937, RMSE (Root Mean Square Error) = 0.9279, RSR (Root Sum of Squares Residuals) = 0.0068, and R2 (Coefficient of Determination) = 0.9937.

Suggested Citation

  • Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224018607
    DOI: 10.1016/j.energy.2024.132086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naghizadeh, Arefeh & Jafari, Saeed & Norouzi-Apourvari, Saied & Schaffie, Mahin & Hemmati-Sarapardeh, Abdolhossein, 2024. "Multi-objective optimization of water-alternating flue gas process using machine learning and nature-inspired algorithms in a real geological field," Energy, Elsevier, vol. 293(C).
    2. Vo Thanh, Hung & Sheini Dashtgoli, Danial & Zhang, Hemeng & Min, Baehyun, 2023. "Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: Implications for carbon utilization projects," Energy, Elsevier, vol. 278(PA).
    3. Abdulwahab Alqahtani & Xupeng He & Bicheng Yan & Hussein Hoteit, 2023. "Uncertainty Analysis of CO 2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization," Energies, MDPI, vol. 16(4), pages 1-16, February.
    4. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    5. Xin, Liguo & Ahmad, Manzoor & Khattak, Shoukat Iqbal, 2023. "Impact of innovation in hybrid electric vehicles-related technologies on carbon dioxide emissions in the 15 most innovative countries," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Eigbe, Patrick A. & Ajayi, Olatunbosun O. & Olakoyejo, Olabode T. & Fadipe, Opeyemi L. & Efe, Steven & Adelaja, Adekunle O., 2023. "A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta," Applied Energy, Elsevier, vol. 350(C).
    9. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    10. Farajzadeh, R. & Eftekhari, A.A. & Dafnomilis, G. & Lake, L.W. & Bruining, J., 2020. "On the sustainability of CO2 storage through CO2 – Enhanced oil recovery," Applied Energy, Elsevier, vol. 261(C).
    11. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    12. Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
    13. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    10. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    11. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    12. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    13. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    14. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    15. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    16. Cini, Federico & Ferrari, Annalisa, 2025. "Towards the estimation of ESG ratings: A machine learning approach using balance sheet ratios," Research in International Business and Finance, Elsevier, vol. 73(PB).
    17. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    18. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    19. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
    20. Villacis, Alexis & Badruddoza, Syed & Mayorga, Joaquin & Mishra, Ashok K., 2022. "Using Machine Learning to Test the Consistency of Food Insecurity Measures," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322472, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224018607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.