IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221023550.html
   My bibliography  Save this article

Working fluid-induced formation damage evaluation for commingled production of multi-layer natural gas reservoirs with flow rate method

Author

Listed:
  • Liu, Hao
  • Su, Guandong
  • Okere, Chinedu J.
  • Li, Guozhang
  • Wang, Xiangchun
  • Cai, Yuzhe
  • Wu, Tong
  • Zheng, Lihui

Abstract

Conventional industry standards (CIS) or methods that rely on the permeability indicator are incapable of directly and precisely evaluating the working fluid damage in multi-layer reservoirs as a whole via Darcy equation and fail to represent the characteristics of gas flow through the reservoir under an in-situ stress state. In this study, we proposed a flow rate method that was based on theoretical derivation and test parameter optimization to overcome these deficiencies. The rationality of the proposed method was verified through comparative experiments and field case analyses. Results showed that the instantaneous flow rate index was almost equivalent to permeability in characterizing the degree of working fluid damage. Comparing the classification of damage degree with the skin factor, the CIS method was only with a conformity of 25%, while the instantaneous flow rate method was as high as 90%. Although the practicality of the cumulative flow rate index has not been proven, it could be used to comprehensively measure the production loss over a specified period. In conclusion, the proposed flow rate method can effectively reflect the actual reservoir properties and accurately evaluate the overall damage of commingled production reservoirs, then providing better guidance for future development plans.

Suggested Citation

  • Liu, Hao & Su, Guandong & Okere, Chinedu J. & Li, Guozhang & Wang, Xiangchun & Cai, Yuzhe & Wu, Tong & Zheng, Lihui, 2022. "Working fluid-induced formation damage evaluation for commingled production of multi-layer natural gas reservoirs with flow rate method," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023550
    DOI: 10.1016/j.energy.2021.122107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    2. Aydin, Mucahit, 2018. "Natural gas consumption and economic growth nexus for top 10 natural Gas–Consuming countries: A granger causality analysis in the frequency domain," Energy, Elsevier, vol. 165(PB), pages 179-186.
    3. Chedid, R. & Kobrosly, M. & Ghajar, R., 2007. "A supply model for crude oil and natural gas in the Middle East," Energy Policy, Elsevier, vol. 35(4), pages 2096-2109, April.
    4. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    5. Dincer, Ibrahim & Rosen, Marc A., 1999. "Energy, environment and sustainable development," Applied Energy, Elsevier, vol. 64(1-4), pages 427-440, September.
    6. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    7. Liu, Li-qun & Liu, Chun-xia & Wang, Jing-si, 2013. "Deliberating on renewable and sustainable energy policies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 191-198.
    8. Zhang, Chen & Li, Tinggang & Su, Guandong & He, Jianzhong, 2020. "Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium," Renewable Energy, Elsevier, vol. 153(C), pages 522-529.
    9. Bildirici, Melike E. & Bakirtas, Tahsin, 2014. "The relationship among oil, natural gas and coal consumption and economic growth in BRICTS (Brazil, Russian, India, China, Turkey and South Africa) countries," Energy, Elsevier, vol. 65(C), pages 134-144.
    10. Gillessen, B. & Heinrichs, H. & Hake, J.-F. & Allelein, H.-J., 2019. "Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Xu, Chengyuan & Xie, Zhichao & Kang, Yili & Yu, Guoyi & You, Zhenjiang & You, Lijun & Zhang, Jingyi & Yan, Xiaopeng, 2020. "A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir," Energy, Elsevier, vol. 210(C).
    12. Pourhoseini, S.H., 2020. "Enhancement of radiation characteristics and reduction of NOx emission in natural gas flame through silver-water nanofluid injection," Energy, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qixian & Xu, Jiang & Shu, Longyong & Yan, Fazhi & Pang, Bo & Peng, Shoujian, 2023. "Exploration of the induced fluid-disturbance effect in CBM co-production in a superimposed pressure system," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdoğan, Seyfettin & Gedikli, Ayfer & Kırca, Mustafa, 2019. "A note on time-varying causality between natural gas consumption and economic growth in Turkey," Resources Policy, Elsevier, vol. 64(C).
    2. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    3. Mo, Bin & Chen, Cuiqiong & Nie, He & Jiang, Yonghong, 2019. "Visiting effects of crude oil price on economic growth in BRICS countries: Fresh evidence from wavelet-based quantile-on-quantile tests," Energy, Elsevier, vol. 178(C), pages 234-251.
    4. Wang, Qi & Suo, Ruixia & Han, Qiutong, 2024. "A study on natural gas consumption forecasting in China using the LMDI-PSO-LSTM model: Factor decomposition and scenario analysis," Energy, Elsevier, vol. 292(C).
    5. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
    6. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    7. Z Fang & D Ding & C Guan, 2024. "Does Methodology Matter? Revisiting the Energy-growth Nexus in Asia Pacific Economies," Economic Issues Journal Articles, Economic Issues, vol. 29(1), pages 5-34, March.
    8. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    9. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    10. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    11. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    12. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    13. Jian Yao, 2014. "A Multi-Objective (Energy, Economic and Environmental Performance) Life Cycle Analysis for Better Building Design," Sustainability, MDPI, vol. 6(2), pages 1-13, January.
    14. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    15. Zhao, Zhen-yu & Tian, Yu-xi & Zillante, George, 2014. "Modeling and evaluation of the wind power industry chain: A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 397-406.
    16. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    17. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    18. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    19. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.