IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224030238.html
   My bibliography  Save this article

Low-rank coalbed methane production capacity prediction method based on time-series deep learning

Author

Listed:
  • Wei, Xiaoyi
  • Huang, Wensong
  • Liu, Lingli
  • Wang, Jianjun
  • Cui, Zehong
  • Xue, Liang

Abstract

Coalbed methane (CBM), a novel clean energy source, significantly contributes to reforming the energy supply structure, advancing carbon neutrality, and achieving peak carbon emissions. A precise production forecasting method is essential for understanding coalbed methane development and improving extraction efficiency. This paper proposes an improved multi-channel LSTM production forecasting model considering the influence of production dynamic factors, based on cutting-edge deep learning technology and widely applied production decline curve analysis methods. The model is experimentally tested on CBM wells in the Surat Basin of Australia. In the data processing segment of the model, we have improved the 3σ rule for handling outliers within a normal distribution. This enhancement maintains data integrity, achieves superior denoising, increases prediction accuracy, and significantly reduces model learning time. The test results demonstrate that the improved model exhibits excellent predictive performance for CBM wells, with 87.3 % of wells having a prediction accuracy exceeding 85 % overall. Additionally, the comprehensive multi-channel LSTM model identifies dynamic controlling factors in CBM production by analyzing variations in prediction accuracy with different dynamic factor combinations. This study provides new insights and scientifically rational references for production forecasting in CBM extraction. It's also crucial for effective production strategies and process optimization.

Suggested Citation

  • Wei, Xiaoyi & Huang, Wensong & Liu, Lingli & Wang, Jianjun & Cui, Zehong & Xue, Liang, 2024. "Low-rank coalbed methane production capacity prediction method based on time-series deep learning," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030238
    DOI: 10.1016/j.energy.2024.133247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    2. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).
    2. Chengwang Wang & Zixi Guo & Lifeng Zhang & Yunwei Kang & Zhenjiang You & Shuguang Li & Yubin Wang & Huaibin Zhen, 2022. "3D Fracture Propagation Simulation and Pressure Decline Analysis Research for I-Shaped Fracture of Coalbed," Energies, MDPI, vol. 15(16), pages 1-20, August.
    3. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    4. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    5. Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
    6. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    7. Li, Qixian & Xu, Jiang & Shu, Longyong & Yan, Fazhi & Pang, Bo & Peng, Shoujian, 2023. "Exploration of the induced fluid-disturbance effect in CBM co-production in a superimposed pressure system," Energy, Elsevier, vol. 265(C).
    8. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
    9. Cui, Mianshan, 2022. "District heating load prediction algorithm based on bidirectional long short-term memory network model," Energy, Elsevier, vol. 254(PA).
    10. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
    11. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
    12. Gong, Junhua & Shi, Guoyun & Wang, Shaobo & Wang, Peng & Chen, Bin & Chen, Yujie & Wang, Bohong & Yu, Bo & Jiang, Weixin & Li, Zongze, 2024. "Efficient super-resolution of pipeline transient process modeling using the Fourier Neural Operator," Energy, Elsevier, vol. 302(C).
    13. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
    14. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    15. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    16. Zhou, H.W. & Liu, Z.L. & Zhong, J.C. & Chen, B.C. & Zhao, J.W. & Xue, D.J., 2022. "NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach," Energy, Elsevier, vol. 261(PA).
    17. Rongheng Lin & Shuo Chen & Zheyu He & Budan Wu & Hua Zou & Xin Zhao & Qiushuang Li, 2024. "Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network," Energies, MDPI, vol. 17(16), pages 1-20, August.
    18. Zhongfei Li & Kai Gan & Shaolong Sun & Shouyang Wang, 2023. "A new PM2.5 concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 154-175, January.
    19. Wu, Han & Liang, Yan & Gao, Xiao-Zhi, 2023. "Left-right brain interaction inspired bionic deep network for forecasting significant wave height," Energy, Elsevier, vol. 278(PB).
    20. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.