IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034175.html
   My bibliography  Save this article

Efficient conversion of methane in aqueous solution assisted by microwave plasma technology with a novel electrode

Author

Listed:
  • Wang, Qiuying
  • Sun, Shaohua
  • Yang, Yutong
  • Zhu, Xiaomei
  • Sun, Bing

Abstract

In order to fully utilize the advantages of liquid phase discharge and achieve efficient hydrogen production. This paper designed an new-type electrode structure and determined the optimal the electrode length in the reactor. On this basis, the contribution of solution pH and H radical to methane reforming in liquid-phase microwave plasma for hydrogen production was mainly discussed. The results indicated that acidic conditions are more conducive to increasing hydrogen production, while alkaline conditions can increase the percentage content of hydrogen. The difference in hydrogen production performance is speculated to be related to the influence of H+ or OH− concentration in the solution on the relative strength of discharge radicals. The important role of H radical in the reaction system was determined through the addition of radical quenchers and spectral diagnosis. H radicals are not only important substances in the reaction to generate H2 but also have an impact on the conversion of methane and the strength of other radicals, thereby changing the amount of other gas-phase products. On the premise of achieving the goal of stable discharge, this experiment provides theoretical guidance for the subsequent liquid phase discharge reforming of methane to produce hydrogen.

Suggested Citation

  • Wang, Qiuying & Sun, Shaohua & Yang, Yutong & Zhu, Xiaomei & Sun, Bing, 2024. "Efficient conversion of methane in aqueous solution assisted by microwave plasma technology with a novel electrode," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034175
    DOI: 10.1016/j.energy.2023.130023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yuan & Zhang, Shuai & Sun, Hao & Wang, Ruixue & Tu, Xin & Shao, Tao, 2018. "Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges," Applied Energy, Elsevier, vol. 226(C), pages 534-545.
    2. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    3. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    4. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Sun, Xiaohang, 2021. "Hydrogen-rich syngas production by liquid phase pulsed electrodeless discharge," Energy, Elsevier, vol. 214(C).
    5. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiuying & Zhu, Xiaomei & Sun, Bing & Li, Zhi & Liu, Jinglin, 2022. "Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy," Applied Energy, Elsevier, vol. 328(C).
    2. Qiu, Guoyi & Zhu, Shaolong & Wang, Kai & Wang, Weibo & Hu, Junhui & Hu, Yun & Zhi, Xiaoqin & Qiu, Limin, 2023. "Numerical study on the dynamic process of reciprocating liquid hydrogen pumps for hydrogen refueling stations," Energy, Elsevier, vol. 281(C).
    3. Changping Li & Xiaohui Wang & Longchen Duan & Bo Lei, 2022. "Study on a Discharge Circuit Prediction Model of High-Voltage Electro-Pulse Boring Based on Bayesian Fusion," Energies, MDPI, vol. 15(10), pages 1-12, May.
    4. Rahmati, Hamed & Ghorbanzadeh, Atamalek, 2021. "Parallel electrodes gliding plasma: Working principles and application in dry reforming of methane," Energy, Elsevier, vol. 230(C).
    5. Shariful Islam Bhuiyan & Kunpeng Wang & Md Abdullah Hil Baky & Jamie Kraus & Howard Jemison & David Staack, 2023. "Controlling Parameters in the Efficiency of Hydrogen Production via Electrification with Multi-Phase Plasma Processing Technology," Energies, MDPI, vol. 16(14), pages 1-15, July.
    6. George, Adwek & Shen, Boxiong & Craven, Michael & Wang, Yaolin & Kang, Dongrui & Wu, Chunfei & Tu, Xin, 2021. "A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Wu, Zuliang & Zhou, Weili & Hao, Xiaodong & Zhang, Xuming, 2019. "Plasma reforming of n-pentane as a simulated gasoline to hydrogen and cleaner carbon-based fuels," Energy, Elsevier, vol. 189(C).
    8. Bogdan Ulejczyk & Paweł Jóźwik & Łukasz Nogal & Michał Młotek & Krzysztof Krawczyk, 2022. "Efficient Conversion of Ethanol to Hydrogen in a Hybrid Plasma-Catalytic Reactor," Energies, MDPI, vol. 15(9), pages 1-11, April.
    9. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    10. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    11. Wang, Xiaoling & Gao, Yuan & Zhang, Shuai & Sun, Hao & Li, Jie & Shao, Tao, 2019. "Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters," Applied Energy, Elsevier, vol. 243(C), pages 132-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.