IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp318-334.html
   My bibliography  Save this article

A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant

Author

Listed:
  • Singh, Ajeet Pratap
  • Kumar, Amit
  • Akshayveer,
  • Singh, O.P.

Abstract

As conventional sources of energy are depleting fast, solar energy based devices can only be mass adopted in future if suitable design innovations are conceptualized and investigated to improve its extremely low energy conversion efficiency. In a first, apart from two important components: a collector and chimney, a third component called bell-mount inlet is proposed, investigated and optimised to enhance system thermal performance. Results show that with suitable design changes in collector, chimney and integrating an efficient bell-mouth at the inlet can substantially increase the air velocity by about 270% and hence drastically enhance the turbine power output compared to the conventional design. Further investigations on physics behind such a high increase in air velocity revealed that total pressure potential or the static pressure recovery becomes high and uniform along the chimney height in the new design, which is entirely absent in the conventional design. The lab-scale design was further analysed by scaling to a 50 kW power plant. Results show that the proposed new system can produce electrical power up to 1738 kW for the same collector area and chimney height of the conventional design. The proposed design is compact, efficient and a step towards making the solar device more viable.

Suggested Citation

  • Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:318-334
    DOI: 10.1016/j.renene.2020.12.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fadaei, Niloufar & Kasaeian, Alibakhsh & Akbarzadeh, Aliakbar & Hashemabadi, Seyed Hassan, 2018. "Experimental investigation of solar chimney with phase change material (PCM)," Renewable Energy, Elsevier, vol. 123(C), pages 26-35.
    2. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    3. Muhammed, Hardi A. & Atrooshi, Soorkeu A., 2019. "Modeling solar chimney for geometry optimization," Renewable Energy, Elsevier, vol. 138(C), pages 212-223.
    4. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    5. Ghalamchi, Mehrdad & Kasaeian, Alibakhsh & Ghalamchi, Mehran & Mirzahosseini, Alireza Hajiseyed, 2016. "An experimental study on the thermal performance of a solar chimney with different dimensional parameters," Renewable Energy, Elsevier, vol. 91(C), pages 477-483.
    6. Singh, Ajeet Pratap & Singh, O.P., 2020. "Curved vs. flat solar air heater: Performance evaluation under diverse environmental conditions," Renewable Energy, Elsevier, vol. 145(C), pages 2056-2073.
    7. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    8. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    9. Kashiwa, B.A. & Kashiwa, Corey B., 2008. "The solar cyclone: A solar chimney for harvesting atmospheric water," Energy, Elsevier, vol. 33(2), pages 331-339.
    10. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.
    11. Ayadi, Ahmed & Bouabidi, Abdallah & Driss, Zied & Abid, Mohamed Salah, 2018. "Experimental and numerical analysis of the collector roof height effect on the solar chimney performance," Renewable Energy, Elsevier, vol. 115(C), pages 649-662.
    12. Gholamalizadeh, E. & Mansouri, S.H., 2013. "A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project," Applied Energy, Elsevier, vol. 102(C), pages 975-982.
    13. Kebabsa, Hakim & Lounici, Mohand Said & Lebbi, Mohamed & Daimallah, Ahmed, 2020. "Thermo-hydrodynamic behavior of an innovative solar chimney," Renewable Energy, Elsevier, vol. 145(C), pages 2074-2090.
    14. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    15. Al-Kayiem, Hussain H. & Aja, Ogboo Chikere, 2016. "Historic and recent progress in solar chimney power plant enhancing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1269-1292.
    16. Nasraoui, Haythem & Driss, Zied & Kchaou, Hedi, 2020. "Novel collector design for enhancing the performance of solar chimney power plant," Renewable Energy, Elsevier, vol. 145(C), pages 1658-1671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    2. Almaita, Eyad & Abdelsalam, Emad & Almomani, Fares & Nawafah, Hamza & Kassem, Fadwa & Alshkoor, Saleh & Shloul, Maan, 2023. "Impact study of integrating solar double chimney power plant into electrical grid," Energy, Elsevier, vol. 265(C).
    3. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    4. Singh, Ajeet Pratap & Singh, Jaydeep & Kumar, Amit & Singh, O.P., 2023. "Vertical limit reduction of chimney in solar power plant," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    2. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    3. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    4. Maia, Cristiana Brasil & Castro Silva, Janaína de Oliveira, 2022. "Thermodynamic assessment of a small-scale solar chimney," Renewable Energy, Elsevier, vol. 186(C), pages 35-50.
    5. Weli, Rizgar Bakr & Atrooshi, Soorkeu A. & Schwarze, Ruediger, 2021. "Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq," Renewable Energy, Elsevier, vol. 176(C), pages 504-519.
    6. Singh, Ajeet Pratap & Singh, Jaydeep & Kumar, Amit & Singh, O.P., 2023. "Vertical limit reduction of chimney in solar power plant," Renewable Energy, Elsevier, vol. 217(C).
    7. Wu, Yongjia & Ming, Tingzhen & de Richter, Renaud & Höffer, Rüdiger & Niemann, Hans-Jürgen, 2020. "Large-scale freshwater generation from the humid air using the modified solar chimney," Renewable Energy, Elsevier, vol. 146(C), pages 1325-1336.
    8. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    9. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    10. Salari, Ali & Shakibi, Hamid & Alimohammadi, Mahdieh & Naghdbishi, Ali & Goodarzi, Shadi, 2023. "A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant," Renewable Energy, Elsevier, vol. 212(C), pages 717-737.
    11. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    12. Ming, Tingzhen & Gong, Tingrui & de Richter, Renaud K. & Cai, Cunjin & Sherif, S.A., 2017. "Numerical analysis of seawater desalination based on a solar chimney power plant," Applied Energy, Elsevier, vol. 208(C), pages 1258-1273.
    13. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    14. Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).
    15. Neeraj Mehla & Krishan Kumar & Manoj Kumar, 2019. "Thermal analysis of solar updraft tower by using different absorbers with convergent chimney," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1251-1269, June.
    16. Balijepalli, Ramakrishna & Chandramohan, V.P. & Kirankumar, K., 2020. "Development of a small scale plant for a solar chimney power plant (SCPP): A detailed fabrication procedure, experiments and performance parameters evaluation," Renewable Energy, Elsevier, vol. 148(C), pages 247-260.
    17. Mehdipour, R. & Golzardi, S. & Baniamerian, Z., 2020. "Experimental justification of poor thermal and flow performance of solar chimney by an innovative indoor experimental setup," Renewable Energy, Elsevier, vol. 157(C), pages 1089-1101.
    18. Kebabsa, Hakim & Said Lounici, Mohand & Daimallah, Ahmed, 2021. "Numerical investigation of a novel tower solar chimney concept," Energy, Elsevier, vol. 214(C).
    19. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    20. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:318-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.