IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics036054422302933x.html
   My bibliography  Save this article

Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery

Author

Listed:
  • Zhang, Xi
  • Hu, Bin
  • Wang, Ruzhu
  • Xu, Zhenyuan

Abstract

Heat pumps, especially the air-source systems, have been regarded as promising technology for deep decarbonization of thermal energy, but its industrial application is strongly constrained by its small temperature lift. Three-stage hybrid absorption-compression heat pump cycles have been proven as an effective way to achieve large temperature lift, but suffer from performance degradation under high temperature lift. In this study, different internal heat recovery configurations for the three-stage hybrid cycle are investigated for performance enhancement under high temperature lift. Results show that the three-stage hybrid cycles with internal heat recovery can reach output temperature of 100–190 °C with COP of 1.26–2.23, under the ambient temperature of 30 °C. By effectively recovering the condensation heat of absorption sub-cycle, the maximum output temperature and maximum temperature lift of three-stage hybrid cycles are increased by 10 °C and 20 °C, respectively, and the COP under 100 °C temperature lift is improved by 13 %. More importantly, sub-zero operation of the three-stage hybrid cycle is enabled by the internal heat recovery. The comprehensive enhancement of three-stage hybrid cycle with internal heat recovery shows the great potential in promoting the industrial application of air-source heat pump.

Suggested Citation

  • Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302933x
    DOI: 10.1016/j.energy.2023.129539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302933X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    3. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    6. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    7. Kim, Jiyoung & Park, Seong-Ryong & Baik, Young-Jin & Chang, Ki-Chang & Ra, Ho-Sang & Kim, Minsung & Kim, Yongchan, 2013. "Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat," Renewable Energy, Elsevier, vol. 54(C), pages 13-19.
    8. Jan Rosenow & Duncan Gibb & Thomas Nowak & Richard Lowes, 2022. "Heating up the global heat pump market," Nature Energy, Nature, vol. 7(10), pages 901-904, October.
    9. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    10. Jian Sun & Yinwu Wang & Kexin Wu & Zhihua Ge & Yongping Yang, 2022. "Analysis of a New Super High Temperature Hybrid Absorption-Compression Heat Pump Cycle," Energies, MDPI, vol. 15(20), pages 1-14, October.
    11. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    12. Xu, Z.Y. & Gao, J.T. & Hu, Bin & Wang, R.Z., 2022. "Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Congqi & Shao, Shuangquan & Wang, Ningbo & Guo, Yanhua & Wu, Wei, 2024. "Performance analysis of compression-assisted absorption refrigeration-heating system for waste heat recovery of liquid-cooling data center," Energy, Elsevier, vol. 305(C).
    2. Yu, Azhi & Ye, Qing & Li, Jinlong & Li, Xinhao & Wang, Yao & Rui, Qingqing, 2024. "Economic, environmental, energy, exergy (4E) analysis and simulated annealing algorithm optimization of dividing-wall column-intensified heterogeneous azeotropic pressure-swing distillation process," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
    2. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    4. Obrist, Michel D. & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2023. "High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland," Energy Policy, Elsevier, vol. 173(C).
    5. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    8. Sergio Bobbo & Giulia Lombardo & Davide Menegazzo & Laura Vallese & Laura Fedele, 2024. "A Technological Update on Heat Pumps for Industrial Applications," Energies, MDPI, vol. 17(19), pages 1-55, October.
    9. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    10. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    12. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    13. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    14. Kumar, Anil & Modi, Anish, 2023. "Energy and exergy analysis of a novel ejector-assisted compression–absorption–resorption refrigeration system," Energy, Elsevier, vol. 263(PC).
    15. Jarosław Kabiesz & Robert Kubica, 2024. "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, MDPI, vol. 17(7), pages 1-19, April.
    16. Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
    17. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
    18. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    19. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    20. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302933x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.