Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
- Jayaraman J. Thiagarajan & Bindya Venkatesh & Rushil Anirudh & Peer-Timo Bremer & Jim Gaffney & Gemma Anderson & Brian Spears, 2020. "Designing accurate emulators for scientific processes using calibration-driven deep models," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
- Etemadi, Nasrollah, 1983. "On the laws of large numbers for nonnegative random variables," Journal of Multivariate Analysis, Elsevier, vol. 13(1), pages 187-193, March.
- Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
- Timo Kern & Patrick Dossow & Serafin von Roon, 2020. "Integrating Bidirectionally Chargeable Electric Vehicles into the Electricity Markets," Energies, MDPI, vol. 13(21), pages 1-30, November.
- Lotta Kannari & Jussi Kiljander & Kalevi Piira & Jouko Piippo & Pekka Koponen, 2021. "Building Heat Demand Forecasting by Training a Common Machine Learning Model with Physics-Based Simulator," Forecasting, MDPI, vol. 3(2), pages 1-13, April.
- Mohamed Ibrahim & Saad Al-Sobhi & Rajib Mukherjee & Ahmed AlNouss, 2019. "Impact of Sampling Technique on the Performance of Surrogate Models Generated with Artificial Neural Network (ANN): A Case Study for a Natural Gas Stabilization Unit," Energies, MDPI, vol. 12(10), pages 1-12, May.
- Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
- Vollmuth, Patrick & Wohlschlager, Daniela & Wasmeier, Louisa & Kern, Timo, 2024. "Prospects of electric vehicle V2G multi-use: Profitability and GHG emissions for use case combinations of smart and bidirectional charging today and 2030," Applied Energy, Elsevier, vol. 371(C).
- Pia Szichta & Ingela Tietze, 2020. "Sharing Economy in der Elektrizitätswirtschaft: Treiber und Hemmnisse [Title sharing economy in the electricity sector: drivers and barriers]," Sustainability Nexus Forum, Springer, vol. 28(3), pages 109-125, December.
- Siemroth, Christoph, 2014.
"Why prediction markets work : The role of information acquisition and endogenous weighting,"
Working Papers
14-02, University of Mannheim, Department of Economics.
- Siemroth, Christoph, 2014. "Why prediction markets work : the role of information acquisition and endogenous weighting," Working Papers 14-29, University of Mannheim, Department of Economics.
- Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
- Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
- Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
- Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
- Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
- Tan, Jiawei & Chen, Xingyu & Bu, Yang & Wang, Feng & Wang, Jialing & Huang, Xianan & Hu, Zhenda & Liu, Lin & Lin, Changzhui & Meng, Chao & Lin, Jian & Xie, Shan & Xu, Jinmei & Jing, Rui & Zhao, Yingru, 2024. "Incorporating FFTA based safety assessment of lithium-ion battery energy storage systems in multi-objective optimization for integrated energy systems," Applied Energy, Elsevier, vol. 367(C).
- Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
- Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Reveron Baecker, Beneharo & Candas, Soner, 2022. "Co-optimizing transmission and active distribution grids to assess demand-side flexibilities of a carbon-neutral German energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Alessandro Niccolai & Seyedamir Orooji & Andrea Matteri & Emanuele Ogliari & Sonia Leva, 2022. "Irradiance Nowcasting by Means of Deep-Learning Analysis of Infrared Images," Forecasting, MDPI, vol. 4(1), pages 1-11, March.
- Vikash Kumar Saini & Chandra Shekhar Purohit & Rajesh Kumar & Ameena S. Al-Sumaiti, 2023. "Proof of Work Consensus Based Peer to Peer Energy Trading in the Indian Residential Community," Energies, MDPI, vol. 16(3), pages 1-25, January.
- Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
- Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
More about this item
Keywords
artificial intelligence; machine learning; distributed energy resources; electricity markets; energy communities; emulation-model; surrogate-model; meta-model; sampling; TSA;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1239-:d:744656. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.