IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924021834.html
   My bibliography  Save this article

Orderly charging of electric vehicles: A two-stage spatial-temporal scheduling method based on user-personalized navigation

Author

Listed:
  • Wu, Hongbin
  • Lan, Xinjie
  • He, Ye
  • Wu, Andrew Y.
  • Ding, Ming

Abstract

As electric vehicles (EVs) are cross-domain entities with dual attributes related to mobile loads and transportation, their travel modes and charging behaviors are stochastic and uncertain in time and space. Large-scale uncoordinated EV charging may cause problems such as the congestion of charging stations (CSs) and overloading of distribution networks (DNs). To address these challenges and the current research gap, and to optimize the spatial-temporal distribution of EV charging loads, a vehicle-road-network collaborative operation framework is constructed in this paper, and a two-stage spatial-temporal scheduling method for EV charging is proposed. In the first stage, real-time traffic and CSs information are introduced to improve Dijkstra's algorithm, and the value preferences of different types of users are considered to further improve the objective function of the algorithm as well. Thus, a dynamic personalized charging navigation model based on improved Dijkstra's algorithm is proposed to provide real-time guidance allowing users to choose their travel paths and CSs. In the second stage, we consider the charging demands of EV users and the operation status of the DN, and an orderly charging model is established to minimize the peak/valley load difference of the DN. Through comprehensive comparisons of experimental results, the variance in the average utilization rates of CSs and the peak valley difference for the DN are reduced by 80.77 % and 16.91 %, respectively. In addition, the time and economic costs of users can be reduced by 9 min and 7.9 RMB, respectively, thereby reducing travel and toll costs and increasing their willingness to participate in scheduling. The simulation experiment proves that the proposed method achieves multi-agent collaborative optimization of EV users, CSs, and DN.

Suggested Citation

  • Wu, Hongbin & Lan, Xinjie & He, Ye & Wu, Andrew Y. & Ding, Ming, 2025. "Orderly charging of electric vehicles: A two-stage spatial-temporal scheduling method based on user-personalized navigation," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021834
    DOI: 10.1016/j.apenergy.2024.124800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924021834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Zewei & Hu, Wuyang & Zhao, Xiaoli, 2024. "Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement," Applied Energy, Elsevier, vol. 361(C).
    2. Wang, Yi & Qiu, Dawei & He, Yinglong & Zhou, Quan & Strbac, Goran, 2023. "Multi-agent reinforcement learning for electric vehicle decarbonized routing and scheduling," Energy, Elsevier, vol. 284(C).
    3. Yin, WanJun & Qin, Xuan, 2022. "Cooperative optimization strategy for large-scale electric vehicle charging and discharging," Energy, Elsevier, vol. 258(C).
    4. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    5. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    6. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    7. Yin, WanJun & Wen, Tao & Zhang, Chao, 2023. "Cooperative optimal scheduling strategy of electric vehicles based on dynamic electricity price mechanism," Energy, Elsevier, vol. 263(PA).
    8. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    9. Yu, Qing & Li, Weifeng & Zhang, Haoran & Chen, Jinyu, 2022. "GPS data in taxi-sharing system: Analysis of potential demand and assessment of fuel consumption based on routing probability model," Applied Energy, Elsevier, vol. 314(C).
    10. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    11. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    12. Lotfi, Mohamed & Almeida, Tiago & Javadi, Mohammad S. & Osório, Gerardo J. & Monteiro, Cláudio & Catalão, João P.S., 2022. "Coordinating energy management systems in smart cities with electric vehicles," Applied Energy, Elsevier, vol. 307(C).
    13. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    14. Liu, Yonggang & Chen, Qianyou & Li, Jie & Zhang, Yuanjian & Chen, Zheng & Lei, Zhenzhen, 2023. "Collaborated eco-routing optimization for continuous traffic flow based on energy consumption difference of multiple vehicles," Energy, Elsevier, vol. 274(C).
    15. D’Auria, Bernardo & Adan, Ivo J.B.F. & Bekker, René & Kulkarni, Vidyadhar, 2022. "An M/M/c queue with queueing-time dependent service rates," European Journal of Operational Research, Elsevier, vol. 299(2), pages 566-579.
    16. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    17. Luo, Yugong & Zhu, Tao & Wan, Shuang & Zhang, Shuwei & Li, Keqiang, 2016. "Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems," Energy, Elsevier, vol. 97(C), pages 359-368.
    18. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    19. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    20. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
    21. Squalli, Jay, 2024. "Environmental hypocrisy? Electric and hybrid vehicle adoption and pro-environmental attitudes in the United States," Energy, Elsevier, vol. 293(C).
    22. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    23. Du, Wenyi & Ma, Juan & Yin, Wanjun, 2023. "Orderly charging strategy of electric vehicle based on improved PSO algorithm," Energy, Elsevier, vol. 271(C).
    24. Triviño-Cabrera, Alicia & Aguado, José A. & Torre, Sebastián de la, 2019. "Joint routing and scheduling for electric vehicles in smart grids with V2G," Energy, Elsevier, vol. 175(C), pages 113-122.
    25. Liu, Shan & Jiang, Hai & Chen, Shuiping & Ye, Jing & He, Renqing & Sun, Zhizhao, 2020. "Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    26. Yin, Wanjun & Jia, Leilei & Ji, Jianbo, 2024. "Energy optimal scheduling strategy considering V2G characteristics of electric vehicle," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    2. Abdelfattah, Wael & Abdelhamid, Ahmed Sayed & Hasanien, Hany M. & Rashad, Basem Abd-Elhamed, 2024. "Smart vehicle-to-grid integration strategy for enhancing distribution system performance and electric vehicle profitability," Energy, Elsevier, vol. 302(C).
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Wang, Weijun & Li, Chen & He, Yan & Bai, Haining & Jia, Kaiqing & Kong, Zhe, 2024. "Enhancement of household photovoltaic consumption potential in village microgrid considering electric vehicles scheduling and energy storage system configuration," Energy, Elsevier, vol. 311(C).
    5. Lee, Wonjong & Koo, Yoonmo & Kim, Yong-gun, 2024. "Environmental time-of-use scheme: Strategic leveraging of financial and environmental incentives for greener electric vehicle charging," Energy, Elsevier, vol. 309(C).
    6. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M., 2024. "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response," Energy, Elsevier, vol. 289(C).
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    9. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    10. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    11. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    12. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
    13. Li, Shuangqi & Gu, Chenghong & Zeng, Xianwu & Zhao, Pengfei & Pei, Xiaoze & Cheng, Shuang, 2021. "Vehicle-to-grid management for multi-time scale grid power balancing," Energy, Elsevier, vol. 234(C).
    14. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    15. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    16. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    17. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging," Energy, Elsevier, vol. 293(C).
    18. Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    19. Liu, Lu & Zhou, Kaile, 2022. "Electric vehicle charging scheduling considering urgent demand under different charging modes," Energy, Elsevier, vol. 249(C).
    20. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924021834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.