IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2694-d1096397.html
   My bibliography  Save this article

Electric Vehicles Charging Using Photovoltaic Energy Surplus: A Framework Based on Blockchain

Author

Listed:
  • Irvylle Cavalcante

    (INESC-ID—Instituto de Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento, Instituto Superior Técnico, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
    Instituto Superior Técnico, University of Lisbon, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Jamilson Júnior

    (Instituto Superior Técnico, University of Lisbon, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Jônatas Augusto Manzolli

    (INESC—Instituto de Engenharia de Sistemas e Computadores de Coimbra, University of Coimbra, Polo II, R. Silvio Lima, 3030-290 Coimbra, Portugal)

  • Luiz Almeida

    (ISR—Instituto de Sistemas e Robótica, University of Coimbra, Polo II, R. Silvio Lima, 3030-290 Coimbra, Portugal)

  • Mauro Pungo

    (Instituto Superior Técnico, University of Lisbon, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Cindy Paola Guzman

    (INESC-ID—Instituto de Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento, Instituto Superior Técnico, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
    Instituto Superior Técnico, University of Lisbon, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal)

  • Hugo Morais

    (INESC-ID—Instituto de Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento, Instituto Superior Técnico, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
    Instituto Superior Técnico, University of Lisbon, Av Rovisco Pais 1, 1049-001 Lisbon, Portugal)

Abstract

In the present day, it is crucial for individuals and companies to reduce their carbon footprints in a society more self-conscious about climate change and other environmental issues. In this sense, public and private institutions are investing in photovoltaic (PV) systems to produce clean energy for self-consumption. Nevertheless, an essential part of this energy is wasted due to lower consumption during non-business periods. This work proposes a novel framework that uses solar-generated energy surplus to charge external electric vehicles (EVs), creating new business opportunities. Furthermore, this paper introduces a novel marketplace platform based on blockchain technology to allow energy trading between institutions and EV owners. Since the energy provided to charge the EV comes from distributed PV generation, the energy’s selling price can be more attractive than the one offered by the retailers—meaning economic gains for the institutions and savings for the users. A case study was carried out to evaluate the feasibility of the proposed solution and its economic advantages. Given the assumptions considered in the study, 3213 EVs could be fully charged by one institution in one year, resulting in over EUR 45,000 in yearly profits. Further, the economic analysis depicts a payback of approximately two years, a net present value of EUR 33,485, and an internal rate of return of 61%. These results indicate that implementing the proposed framework could enable synergy between institutions and EV owners, providing clean and affordable energy to charge vehicles.

Suggested Citation

  • Irvylle Cavalcante & Jamilson Júnior & Jônatas Augusto Manzolli & Luiz Almeida & Mauro Pungo & Cindy Paola Guzman & Hugo Morais, 2023. "Electric Vehicles Charging Using Photovoltaic Energy Surplus: A Framework Based on Blockchain," Energies, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2694-:d:1096397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    2. Riya Kakkar & Rajesh Gupta & Smita Agrawal & Pronaya Bhattacharya & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba, 2022. "Blockchain and Double Auction-Based Trustful EVs Energy Trading Scheme for Optimum Pricing," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    3. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    4. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    7. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    8. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    9. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    10. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    11. Smith, Christopher J. & Forster, Piers M. & Crook, Rolf, 2014. "Global analysis of photovoltaic energy output enhanced by phase change material cooling," Applied Energy, Elsevier, vol. 126(C), pages 21-28.
    12. Helindu Cumaratunga & Masaki Imanaka & Muneaki Kurimoto & Shigeyuki Sugimoto & Takeyoshi Kato, 2021. "Proposal of Priority Schemes for Controlling Electric Vehicle Charging and Discharging in a Workplace Power System with High Penetration of Photovoltaic Systems," Energies, MDPI, vol. 14(22), pages 1-23, November.
    13. Hugo Morais & Tiago Pinto & Zita Vale, 2020. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    2. Ana Carolina Dias Barreto de Souza & Filipe Menezes de Vasconcelos & Gabriel Abel Massunanga Moreira & João Victor dos Reis. Alves & Jonathan Muñoz Tabora & Maria Emília de Lima Tostes & Carminda Céli, 2024. "Impact of Electric Vehicles Consumption on Energy Efficient and Self-Sufficient Performance in Building: A Case Study in the Brazilian Amazon Region," Energies, MDPI, vol. 17(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    2. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    3. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    4. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    5. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    8. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    9. Peter Tauš & Marcela Taušová & Peter Sivák & Mária Shejbalová Muchová & Eva Mihaliková, 2020. "Parameter Optimization Model Photovoltaic Battery System for Charging Electric Cars," Energies, MDPI, vol. 13(17), pages 1-17, September.
    10. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    11. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    12. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    13. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    14. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    15. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    16. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    17. William Philip Wall & Bilal Khalid & Mariusz Urbański & Michal Kot, 2021. "Factors Influencing Consumer’s Adoption of Renewable Energy," Energies, MDPI, vol. 14(17), pages 1-19, August.
    18. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    19. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    20. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2694-:d:1096397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.