IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319164.html
   My bibliography  Save this article

Electric vehicle charging in smart grid: A spatial-temporal simulation method

Author

Listed:
  • Xiang, Yue
  • Jiang, Zhuozhen
  • Gu, Chenghong
  • Teng, Fei
  • Wei, Xiangyu
  • Wang, Yang

Abstract

Electric vehicles (EVs) play an important role in the future energy system. The large-scale adoption of moving EV load significantly accelerates the integration of transportation and distribution systems. The method to simulate the mobility and charging of a single or aggregated EVs is the key to analyze EVs’ flexibility on the operation of distribution network. Considering the integrated impacts from both the transportation and power systems, and the uncertainty of user’s driving behavior and charging intention, this paper proposes a spatial-temporal simulation method based on the vehicle-transportation-grid trajectory. The trajectory can not only describe the destination location and time like the trip chain, but also give the key information including the driving path in a whole travel process. The driving, parking, and charging are analyzed by the proposed spatial-temporal simulation method. It models the driving behavior based on statistical results and transportation systems, EV energy consumption pattern based on battery energy, and the charging demand based on the user’s subjective intention at the coupled systems. Finally, a 30-node transportation system is developed and integrated with a 33-bus distribution network to illustrate the proposed method. Two typical days, “workday” and “holiday”, are simulated and compared under different EV penetration levels (0%, 20%, 50% and 100%), different trip chain ratio (the ratio of 3-trip chains is 50%, 70%, 90%) to demonstrate the effectiveness of the spatial-temporal simulation method.

Suggested Citation

  • Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319164
    DOI: 10.1016/j.energy.2019.116221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    2. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yuechen Sophia & Tayarani, Mohammad & Gao, H. Oliver, 2022. "An activity-based travel and charging behavior model for simulating battery electric vehicle charging demand," Energy, Elsevier, vol. 258(C).
    2. Ren, Yilong & Lan, Zhengxing & Yu, Haiyang & Jiao, Gangxin, 2022. "Analysis and prediction of charging behaviors for private battery electric vehicles with regular commuting: A case study in Beijing," Energy, Elsevier, vol. 253(C).
    3. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    4. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    5. Richard, René & Cao, Hung & Wachowicz, Monica, 2022. "EVStationSIM: An end-to-end platform to identify and interpret similar clustering patterns of EV charging stations across multiple time slices," Applied Energy, Elsevier, vol. 322(C).
    6. Sandström, Maria & Huang, Pei & Bales, Chris & Dotzauer, Erik, 2023. "Evaluation of hosting capacity of the power grid for electric vehicles – A case study in a Swedish residential area," Energy, Elsevier, vol. 284(C).
    7. Xiangyu Luo & Rui Qiu, 2020. "Electric Vehicle Charging Station Location towards Sustainable Cities," IJERPH, MDPI, vol. 17(8), pages 1-22, April.
    8. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    9. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    10. Simolin, Toni & Rauma, Kalle & Viri, Riku & Mäkinen, Johanna & Rautiainen, Antti & Järventausta, Pertti, 2021. "Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites," Applied Energy, Elsevier, vol. 303(C).
    11. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    12. Mohammadnejad, Mehran & Abdollahi, Amir & Rashidinejad, Masoud, 2020. "Possibilistic-probabilistic self-scheduling of PEVAggregator for participation in spinning reserve market considering uncertain DRPs," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    3. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    4. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    5. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    6. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    7. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    8. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    9. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    10. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    11. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    12. Pei, Wei & Chen, Yanning & Sheng, Kun & Deng, Wei & Du, Yan & Qi, Zhiping & Kong, Li, 2015. "Temporal-spatial analysis and improvement measures of Chinese power system for wind power curtailment problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 148-168.
    13. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    14. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    15. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    16. Li, Bin & Dong, Xujun & Wen, Jianghui, 2022. "Cooperative-driving control for mixed fleets at wireless charging sections for lane changing behaviour," Energy, Elsevier, vol. 243(C).
    17. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    18. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    19. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    20. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.