IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p766-d208936.html
   My bibliography  Save this article

Modelling Load Profiles of Heat Pumps

Author

Listed:
  • Jochen Conrad

    (Forschungsstelle für Energiewirtschaft e. V., 80995 Munich, Germany)

  • Simon Greif

    (Forschungsstelle für Energiewirtschaft e. V., 80995 Munich, Germany)

Abstract

Approximately one quarter of energy-related emissions in Germany are caused by the domestic sector. At 81%, the largest share of these emissions is due to heat supply. Many measures are available to reduce these emissions. One of these measures, which is considered to play an important role in many studies, is the replacement of fossil-fired boilers with electric heat pumps. In order to be able to analyse the impact of high penetrations of heat pumps on the energy system, the coefficient of performance (COP) must be modelled with high temporal resolution. In this study, a methodology is presented on how to calculate high-resolution COPs and the electrical load of heat pumps based on thermal load curves and temperature time series. The COP is determined by the reciprocal Carnot factor. Since heat pumps are often designed bivalently due to the cost structure, the methodology described can also be used for evaluating the combination of immersion heater and heat pump (here for the air/water heat pump). As a result the theoretical hourly COPs determined are calibrated with annual performance factors from field tests. The modelled COPs show clear differences. Currently, mostly air source heat pumps are installed in Germany. If this trend continues, the maximum electrical load of the heat supply will increase more than would be the case with higher shares of ground source heat pumps.

Suggested Citation

  • Jochen Conrad & Simon Greif, 2019. "Modelling Load Profiles of Heat Pumps," Energies, MDPI, vol. 12(4), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:766-:d:208936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/766/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Tobias Hübner, 2020. "Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry," Energies, MDPI, vol. 13(7), pages 1-43, April.
    3. Filip Bartyzel & Tomasz Wegiel & Magdalena Kozień-Woźniak & Marek Czamara, 2022. "Numerical Simulation of Operating Parameters of the Ground Source Heat Pump," Energies, MDPI, vol. 15(1), pages 1-13, January.
    4. Ferenc Szodrai, 2020. "Heat Sink Shape and Topology Optimization with Pareto-Vector Length Optimization for Air Cooling," Energies, MDPI, vol. 13(7), pages 1-15, April.
    5. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    6. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.
    7. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:766-:d:208936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.