IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012986.html
   My bibliography  Save this article

Influence of process parameters on thermal characteristics of char from co-pyrolysis of eucalyptus biomass and polystyrene: Its prospects as a solid fuel

Author

Listed:
  • Samal, Biswajit
  • Vanapalli, Kumar Raja
  • Dubey, Brajesh Kumar
  • Bhattacharya, Jayanta
  • Chandra, Subhash
  • Medha, Isha

Abstract

The prospects of chars derived from the co-pyrolysis of waste polystyrene (WPS) and eucalyptus biomass at variable temperatures (300–550 °C), residence times (90–150 min) and proportions of WPS (w/w) (33% and 25%) for their potential use as a solid fuel were assessed. The production of char suggested an improved fuel quality compared to the raw feedstock because of reduced volatile and oxygen contents, along with an increase in the carbon and fixed carbon contents. While the properties of the char such as energy density (1.12–1.30), high heat value (28.03–32.5 MJ/kg) had their maximum values observed with 33% WPS content at 300 °C, fixed carbon (4.5–34.19%), fuel ratio (0.05–0.64) were maximum with 25% WPS content at 550 °C. Moreover, the energy yield of the char was higher than the mass yield. The chars produced at 300, 350 °C were observed to have O/C and H/C ratios similar to that of sub-bituminous and bituminous coal. Principal component analysis presented the variable effects of WPS on the properties of the char through physical inhibition and synergistic interactions below and above the complete volatilization temperature of WPS.

Suggested Citation

  • Samal, Biswajit & Vanapalli, Kumar Raja & Dubey, Brajesh Kumar & Bhattacharya, Jayanta & Chandra, Subhash & Medha, Isha, 2021. "Influence of process parameters on thermal characteristics of char from co-pyrolysis of eucalyptus biomass and polystyrene: Its prospects as a solid fuel," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012986
    DOI: 10.1016/j.energy.2021.121050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    2. Anupam, Kumar & Sharma, Arvind Kumar & Lal, Priti Shivhare & Dutta, Suman & Maity, Sudip, 2016. "Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding," Energy, Elsevier, vol. 106(C), pages 743-756.
    3. Samy Sadaka & Mahmoud A. Sharara & Amanda Ashworth & Patrick Keyser & Fred Allen & Andrew Wright, 2014. "Characterization of Biochar from Switchgrass Carbonization," Energies, MDPI, vol. 7(2), pages 1-20, January.
    4. Chattopadhyay, Jayeeta & Pathak, T.S. & Srivastava, R. & Singh, A.C., 2016. "Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis," Energy, Elsevier, vol. 103(C), pages 513-521.
    5. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stančin, H. & Mikulčić, H. & Manić, N. & Stojiljiković, D. & Vujanović, M. & Wang, X. & Duić, N., 2021. "Thermogravimetric and kinetic analysis of biomass and polyurethane foam mixtures Co-Pyrolysis," Energy, Elsevier, vol. 237(C).
    2. Vanapalli, Kumar Raja & Bhattacharya, Jayanta & Samal, Biswajit & Chandra, Subhash & Medha, Isha & Dubey, Brajesh K., 2021. "Inhibitory and synergistic effects on thermal behaviour and char characteristics during the co-pyrolysis of biomass and single-use plastics," Energy, Elsevier, vol. 235(C).
    3. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nallagatla Vinod Kumar & Gajanan L. Sawargaonkar & C. Sudha Rani & Ajay Singh & T. Ram Prakash & S. Triveni & Prasad J. Kamdi & Rajesh Pasumarthi & Rayapati Karthik & Bathula Venkatesh, 2023. "Comparative Analysis of Pigeonpea Stalk Biochar Characteristics and Energy Use under Different Biochar Production Methods," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
    2. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    3. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    4. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    5. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    6. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    7. Fivga, Antzela & Dimitriou, Ioanna, 2018. "Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment," Energy, Elsevier, vol. 149(C), pages 865-874.
    8. Huang, Yu-Fong & Kuan, Wen-Hui & Chang, Chun-Yuan, 2018. "Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover," Energy, Elsevier, vol. 143(C), pages 696-703.
    9. Jiang, Haifeng & Liu, Haipeng & Dong, Jiaxin & Song, Jiaxing & Deng, Sunhua & Chen, Jie & Zhang, Yu & Hong, Wenpeng, 2022. "Enhancing ketones and syngas production by CO2-assisted catalytic pyrolysis of cellulose with the Ce–Co–Na ternary catalyst," Energy, Elsevier, vol. 250(C).
    10. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
    11. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    12. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    13. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    14. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    15. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    16. Jan Nisar & Raqeeb Ullah & Ghulam Ali & Afzal Shah & Muhammad Imran Din & Zaib Hussain & Roohul Amin, 2023. "Thermocatalytic Decomposition of Sesame Waste Biomass over Ni-Co-Doped MCM-41: Kinetics and Physicochemical Properties of the Bio-Oil," Energies, MDPI, vol. 16(9), pages 1-15, April.
    17. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    19. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Xie, Youping & Liu, Zhenquan & Chang, Jo-Shu, 2018. "Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index," Applied Energy, Elsevier, vol. 220(C), pages 598-604.
    20. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.