IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4117-d1394561.html
   My bibliography  Save this article

An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application

Author

Listed:
  • Michele Bertone

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy)

  • Luca Stabile

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy)

  • Giorgio Buonanno

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
    International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia)

Abstract

This paper provides an overview of the integration of Carbon Capture, Utilization, or Storage (CCUS) technologies with Waste-to-Energy (WtE) incineration plants in retrofit applications. It explains the operational principles of WtE incineration, including the generation of both biogenic and fossil CO 2 emissions and the potential for CCUS technologies to mitigate these emissions. In addition, the paper covers the regulatory framework influencing the adoption of such technologies and highlights the recent Directive 2023/959 for the inclusion of WtE incinerators in the European Union Emissions Trading System (EU ETS) by 2028. This measure could provide a significant impulse for the integration of CCUS in WtE incineration plants. Moreover, it discusses the use of CO 2 captured, which could be used in Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU), and offers a comparison of the CCUS projects that have already been implemented worldwide, with a focus on the Netherlands and Italy. It illustrates the Netherlands’ advantageous position due to its developed CO 2 market and early CCUS adoption, compared to Italy’s emerging market and initial storage solutions.

Suggested Citation

  • Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4117-:d:1394561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    2. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Stefan Bringezu, 2014. "Carbon Recycling for Renewable Materials and Energy Supply," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 327-340, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Bertone & Luca Stabile & Gino Cortellessa & Fausto Arpino & Giorgio Buonanno, 2024. "Techno-Economic Assessment of Amine-Based Carbon Capture in Waste-to-Energy Incineration Plant Retrofit," Sustainability, MDPI, vol. 16(19), pages 1-17, September.
    2. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    3. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    4. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    5. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    6. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    7. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    8. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    9. Vlasopoulos, Antonis & Malinauskaite, Jurgita & Żabnieńska-Góra, Alina & Jouhara, Hussam, 2023. "Life cycle assessment of plastic waste and energy recovery," Energy, Elsevier, vol. 277(C).
    10. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
    11. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    12. Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
    13. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    14. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    15. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    16. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    17. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    18. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    19. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    20. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4117-:d:1394561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.