IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp246-257.html
   My bibliography  Save this article

Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage

Author

Listed:
  • Angerer, Michael
  • Kahlert, Steffen
  • Spliethoff, Hartmut

Abstract

In this paper a novel buffer storage for the thermal decoupling of gas turbine (GT) and heat recovery steam generator (HRSG) during startups and shutdowns is presented to the scientific public. The storage consists of a matrix of metal plates, placed in the flue gas channel between GT and HRSG, which is heated up during startup and cooled down during shutdown thus reducing the thermal gradients in the actual HRSG. The limitation to fast startups in combined cycle gas turbine (CCGT) plants is usually fatigue induced damage in critical components in the HRSG. To investigate the influence of the storage on the fatigue damage, a transient modeling strategy of both, storage and HRSG, is developed. It is found, that in the investigated plant such a storage is capable of reducing the cycling fatigue damage in the most critical part of the HRSG by up to 90% and therefore enables to act the GT as flexible as if no HRSG was connected to it.

Suggested Citation

  • Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:246-257
    DOI: 10.1016/j.energy.2017.04.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alobaid, Falah & Postler, Ralf & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2008. "Modeling and investigation start-up procedures of a combined cycle power plant," Applied Energy, Elsevier, vol. 85(12), pages 1173-1189, December.
    2. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    3. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    4. Shin, J.Y. & Jeon, Y.J. & Maeng, D.J. & Kim, J.S. & Ro, S.T., 2002. "Analysis of the dynamic characteristics of a combined-cycle power plant," Energy, Elsevier, vol. 27(12), pages 1085-1098.
    5. Wogrin, Sonja & Galbally, David & Ramos, Andrés, 2016. "CCGT unit commitment model with first-principle formulation of cycling costs due to fatigue damage," Energy, Elsevier, vol. 113(C), pages 227-247.
    6. Buttler, Alexander & Dinkel, Felix & Franz, Simon & Spliethoff, Hartmut, 2016. "Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014," Energy, Elsevier, vol. 106(C), pages 147-161.
    7. Alobaid, Falah & Pfeiffer, Stefan & Epple, Bernd & Seon, Chil-Yeong & Kim, Hyun-Gee, 2012. "Fast start-up analyses for Benson heat recovery steam generator," Energy, Elsevier, vol. 46(1), pages 295-309.
    8. Hentschel, Julia & Zindler, Henning & Spliethoff, Hartmut, 2017. "Modelling and transient simulation of a supercritical coal-fired power plant: Dynamic response to extended secondary control power output," Energy, Elsevier, vol. 137(C), pages 927-940.
    9. Taler, Jan & Węglowski, Bohdan & Taler, Dawid & Sobota, Tomasz & Dzierwa, Piotr & Trojan, Marcin & Madejski, Paweł & Pilarczyk, Marcin, 2015. "Determination of start-up curves for a boiler with natural circulation based on the analysis of stress distribution in critical pressure components," Energy, Elsevier, vol. 92(P1), pages 153-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Alobaid, Falah & Peters, Jens & Amro, Rami & Epple, Bernd, 2020. "Dynamic process simulation for Polish lignite combustion in a 1MWth circulating fluidized bed during load changes," Applied Energy, Elsevier, vol. 278(C).
    3. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    4. Wang, Yingjie & Wang, Mingjun & Jia, Kang & Tian, Wenxi & Qiu, Suizheng & Su, Guanghui, 2022. "Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system," Energy, Elsevier, vol. 256(C).
    5. Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Ayman Temraz & Falah Alobaid & Jerome Link & Ahmed Elweteedy & Bernd Epple, 2021. "Development and Validation of a Dynamic Simulation Model for an Integrated Solar Combined Cycle Power Plant," Energies, MDPI, vol. 14(11), pages 1-23, June.
    7. Mohammadian, Poorya Keshavarz & Saidi, Mohammad Hassan, 2019. "Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic," Energy, Elsevier, vol. 183(C), pages 1295-1313.
    8. González-Gómez, P.A. & Gómez-Hernández, J. & Briongos, J.V. & Santana, D., 2018. "Fatigue analysis of the steam generator of a parabolic trough solar power plant," Energy, Elsevier, vol. 155(C), pages 565-577.
    9. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
    10. Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
    11. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    12. Richter, Marcel & Oeljeklaus, Gerd & Görner, Klaus, 2019. "Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage," Applied Energy, Elsevier, vol. 236(C), pages 607-621.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    2. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    3. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    4. Alobaid, Falah & Al-Maliki, Wisam Abed Kattea & Lanz, Thomas & Haaf, Martin & Brachthäuser, Andreas & Epple, Bernd & Zorbach, Ingo, 2018. "Dynamic simulation of a municipal solid waste incinerator," Energy, Elsevier, vol. 149(C), pages 230-249.
    5. Hentschel, Julia & Zindler, Henning & Spliethoff, Hartmut, 2017. "Modelling and transient simulation of a supercritical coal-fired power plant: Dynamic response to extended secondary control power output," Energy, Elsevier, vol. 137(C), pages 927-940.
    6. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    7. Sabia, Gabriele & Heinze, Christian & Alobaid, Falah & Martelli, Emanuele & Epple, Bernd, 2019. "ASPEN dynamics simulation for combined cycle power plant – Validation with hot start-up measurement," Energy, Elsevier, vol. 187(C).
    8. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    9. Farahani, Yaser & Jafarian, Ali & Mahdavi Keshavar, Omid, 2022. "Dynamic simulation of a hybrid once-through and natural circulation Heat Recovery Steam Generator (HRSG)," Energy, Elsevier, vol. 242(C).
    10. Mertens, Nicolas & Alobaid, Falah & Starkloff, Ralf & Epple, Bernd & Kim, Hyun-Gee, 2015. "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up," Applied Energy, Elsevier, vol. 144(C), pages 250-260.
    11. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).
    12. Benato, A. & Bracco, S. & Stoppato, A. & Mirandola, A., 2016. "LTE: A procedure to predict power plants dynamic behaviour and components lifetime reduction during transient operation," Applied Energy, Elsevier, vol. 162(C), pages 880-891.
    13. Alsanousie, Abdurrahman A. & Elsamni, Osama A. & Attia, Abdelhamid E. & Elhelw, Mohamed, 2021. "Transient and troubleshoots management of aged small-scale steam power plants using Aspen Plus Dynamics," Energy, Elsevier, vol. 223(C).
    14. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    15. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    16. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    17. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    18. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    19. Alobaid, Falah & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2009. "Dynamic simulation of a supercritical once-through heat recovery steam generator during load changes and start-up procedures," Applied Energy, Elsevier, vol. 86(7-8), pages 1274-1282, July.
    20. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:246-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.