Optimization of synthesis gas production in the biomass chemical looping gasification process operating under auto-thermal conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.120317
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Zhen & He, Fang & Zhu, Huangqing & Chen, Dezhen & Zhao, Kun & Wei, Guoqiang & Feng, Yipeng & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2015. "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 546-553.
- Mohamed, Usama & Zhao, Yingjie & Huang, Yi & Cui, Yang & Shi, Lijuan & Li, Congming & Pourkashanian, Mohamed & Wei, Guoqiang & Yi, Qun & Nimmo, William, 2020. "Sustainability evaluation of biomass direct gasification using chemical looping technology for power generation with and w/o CO2 capture," Energy, Elsevier, vol. 205(C).
- Zeng, Jimin & Xiao, Rui & Yuan, Jun, 2021. "High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor," Energy, Elsevier, vol. 214(C).
- Huang, Zhen & Deng, Zhengbing & Chen, Dezhen & He, Fang & Liu, Shuai & Zhao, Kun & Wei, Guoqiang & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2017. "Thermodynamic analysis and kinetic investigations on biomass char chemical looping gasification using Fe-Ni bimetallic oxygen carrier," Energy, Elsevier, vol. 141(C), pages 1836-1844.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chang, Yuxue & Li, Guang & Ma, Shuqi & Zhao, Xiaolei & Li, Na & Zhou, Xing & Zhang, Yulong, 2022. "Effect of hierarchical pore structure of oxygen carrier on the performance of biomass chemical looping hydrogen generation," Energy, Elsevier, vol. 254(PB).
- Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ren, Yi & Wang, Zhiyong & Chen, Jianbiao & Gao, Haojie & Guo, Kai & Wang, Xu & Wang, Xiaoyuan & Wang, Yinfeng & Chen, Haijun & Zhu, Jinjiao & Zhu, Yuezhao, 2023. "Effect of water/acetic acid washing pretreatment on biomass chemical looping gasification (BCLG) using cost-effective oxygen carrier from iron-rich sludge ash," Energy, Elsevier, vol. 272(C).
- Liu, Feng & Fang, Ruixue & Wang, Xufeng & Liu, Jing & Li, Yu, 2022. "The reaction characteristics and mechanism of pine sawdust chemical-looping gasification based on CoFe2O4 oxygen carrier," Renewable Energy, Elsevier, vol. 195(C), pages 1300-1309.
- Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
- Zeng, Jimin & Hu, Jiawei & Qiu, Yu & Zhang, Shuai & Zeng, Dewang & Xiao, Rui, 2019. "Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
- Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
- Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
- Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
- Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
- Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
- Wang, Dechao & Jin, Lijun & Li, Yang & Yao, Demeng & Wang, Jiaofei & Hu, Haoquan, 2018. "Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3," Energy, Elsevier, vol. 162(C), pages 542-553.
- Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
- Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
- Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
- Ashokkumar, Veeramuthu & Chen, Wei-Hsin & Kamyab, Hesam & Kumar, Gopalakrishnan & Al-Muhtaseb, Ala'a H. & Ngamcharussrivichai, Chawalit, 2019. "Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – Integr," Energy, Elsevier, vol. 189(C).
- Shahbaz, Muhammad & Yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Pratama, Angga, 2016. "Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash," Applied Energy, Elsevier, vol. 184(C), pages 1306-1315.
- Saidi, Majid & Faraji, Mehdi, 2024. "Thermochemical conversion of neem seed biomass to sustainable hydrogen and biofuels: Experimental and theoretical evaluation," Renewable Energy, Elsevier, vol. 221(C).
- Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
More about this item
Keywords
Chemical looping gasification; Heat balance; Biomass; Oxygen carriers; Modelling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005661. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.