IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008976.html
   My bibliography  Save this article

Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets

Author

Listed:
  • Elsayed, Ahmed M.
  • Khalifa, Mohamed A.
  • Benini, Ernesto
  • Aziz, Mohamed A.

Abstract

The present work investigates the effects of multi-suction jets on the NACA 0012 airfoil's aerodynamic characteristics at Reynolds number Re equal 0.54 × 105. Experiments and numerical simulations are carried out to this purpose. The surface of the airfoil is equipped with multiple suction slots, and aerodynamic forces are measured as a result. Numerical simulations are employed to illustrate the flow structures on both the modified and unmodified airfoils. The study examines how the lift coefficient, drag coefficient, stall angle, and flow separation are influenced by the location of the airfoil surface suction jets, suction pressure values, and the number of suction slots. Additionally, the study investigates flow reattachments to identify the optimal control case. The results demonstrated that the multiple suction jets along the airfoil blade's upper surface have the best lift coefficient increment performance. In particular, the results showed that maximum improvements in lift coefficient, CL, is attained as 480%, at a stall angle of attack (AOA) equal to 22° and flow speed of 8 m/s using numerical simulation with the suction slot. The experimental results showed that lift coefficient improvements, CL, reached 55.7% using suction holes at a stall AOA equal to 16° and a flow speed of 8 m/s. In addition, the CL, CD, CL/CD, and separation flow are very sensitive to the suction jet location and the use of the multi-suction technique simultaneously.

Suggested Citation

  • Elsayed, Ahmed M. & Khalifa, Mohamed A. & Benini, Ernesto & Aziz, Mohamed A., 2023. "Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008976
    DOI: 10.1016/j.energy.2023.127503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chengyong Zhu & Tongguang Wang & Jie Chen & Wei Zhong, 2020. "Effect of Single-Row and Double-Row Passive Vortex Generators on the Deep Dynamic Stall of a Wind Turbine Airfoil," Energies, MDPI, vol. 13(10), pages 1-13, May.
    2. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    3. Aitor Saenz-Aguirre & Unai Fernandez-Gamiz & Ekaitz Zulueta & Alain Ulazia & Jon Martinez-Rico, 2019. "Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    4. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    5. Guoqiang, Li & Shihe, Yi, 2020. "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator," Energy, Elsevier, vol. 212(C).
    6. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    7. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    8. Tiainen, Jonna & Grönman, Aki & Jaatinen-Värri, Ahti & Pyy, Lauri, 2020. "Effect of non-ideally manufactured riblets on airfoil and wind turbine performance," Renewable Energy, Elsevier, vol. 155(C), pages 79-89.
    9. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    10. Mereu, Riccardo & Passoni, Stefano & Inzoli, Fabio, 2019. "Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: Validation and sensitivity analyses," Energy, Elsevier, vol. 187(C).
    11. Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
    12. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    13. Mostafa, Wafaa & Abdelsamie, Abouelmagd & Sedrak, Momtaz & Thévenin, Dominique & Mohamed, Mohamed H., 2022. "Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    2. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    3. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    4. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    5. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
    6. Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation," Energy, Elsevier, vol. 248(C).
    7. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    8. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    10. Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
    11. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    12. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
    13. Ni, Lulu & Miao, Weipao & Li, Chun & Liu, Qingsong, 2021. "Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations," Energy, Elsevier, vol. 215(PA).
    14. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    15. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    16. Riyadh Belamadi & Abdelhakim Settar & Khaled Chetehouna & Adrian Ilinca, 2022. "Numerical Modeling of Horizontal Axis Wind Turbine: Aerodynamic Performances Improvement Using an Efficient Passive Flow Control System," Energies, MDPI, vol. 15(13), pages 1-21, July.
    17. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    18. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    19. Zhu, Jianyang & Zhu, Mingkang & Zhang, Tao & Zhao, Hui & Wang, Chao, 2021. "Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil," Energy, Elsevier, vol. 227(C).
    20. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.