IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221021149.html
   My bibliography  Save this article

Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning

Author

Listed:
  • Zhou, Jianhao
  • Liu, Jun
  • Xue, Yuan
  • Liao, Yuhui

Abstract

To fulfill the increasing power level of fuel cell, a self-adaptive energy management strategy (EMS) with considerations of the efficiency and health of dual-stack fuel cell (DFC) and the total traveling costs for a logistics truck is proposed. The virtual attractive/repulsive forces generated by artificial potential field (APF) functions are applied to DFC and battery system as performance regulator in order to guarantee the efficiency of DFC and the maintenance of SOC. Deep reinforcement learning algorithm, namely deep deterministic policy gradient (DDPG), is leveraged to automatically adjust the virtual force exerted to APF functions in order to assist the power allocation between various energy sources. In comparison to identical power allocation via equivalent hydrogen consumption minimization strategy, APF function generated uneven power distribution of DFC by prohibiting high/low current and frequently start/stop operations of single fuel cell, especially under charge depletion stage. Meanwhile, DDPG-tuner is effective to soften the interaction effect between DFC and battery while meeting the multi-objectives of the EMS. The proposed EMS in cooperation of APF function and DDPG tuner is expected to cope with the dynamic price fluctuation of various energy sources and beneficial to reduce total travel costs as well as extend the DFC's longevity.

Suggested Citation

  • Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021149
    DOI: 10.1016/j.energy.2021.121866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    2. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    3. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    4. Lin, Xinyou & Xia, Yutian & Huang, Wei & Li, Hailin, 2021. "Trip distance adaptive power prediction control strategy optimization for a Plug-in Fuel Cell Electric Vehicle," Energy, Elsevier, vol. 224(C).
    5. Jinquan, Guo & Hongwen, He & Jiankun, Peng & Nana, Zhou, 2019. "A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 175(C), pages 378-392.
    6. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    7. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    8. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    9. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
    10. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2021. "Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning," Energy, Elsevier, vol. 226(C).
    11. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    2. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    3. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    4. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information," Energy, Elsevier, vol. 290(C).
    5. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Towards a fossil-free urban transport system: An intelligent cross-type transferable energy management framework based on deep transfer reinforcement learning," Applied Energy, Elsevier, vol. 363(C).
    6. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2022. "Driving information process system-based real-time energy management for the fuel cell bus to minimize fuel cell engine aging and energy consumption," Energy, Elsevier, vol. 248(C).
    2. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    3. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    4. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    5. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    6. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    7. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    8. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    9. Zhiming Zhang & Jun Zhang & Liang Shi & Tong Zhang, 2022. "A Study of Contact Pressure with Thermo-Mechanical Coupled Action for a Full-Dimensional PEMFC Stack," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    10. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.
    11. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    12. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    13. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    14. Li, Yi & Yuan, Fang & Weng, Rengang & Xi, Fang & Liu, Wei, 2021. "Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells," Energy, Elsevier, vol. 235(C).
    15. Min, Haitao & Wu, Huiduo & Zhao, Honghui & Sun, Weiyi & Yu, Yuanbin, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on multi-scale information fusion," Applied Energy, Elsevier, vol. 368(C).
    16. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    17. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    18. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    19. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    20. Yongbing Xiang & Xiaomin Yang, 2021. "An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.