IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics036054422101598x.html
   My bibliography  Save this article

Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells

Author

Listed:
  • Li, Yi
  • Yuan, Fang
  • Weng, Rengang
  • Xi, Fang
  • Liu, Wei

Abstract

Porosity distribution in gas diffusion layer has a significant impact on cell performance by affecting the oxygen transport and the electrical conductivity. This contribution presents a theoretical optimization model for porosity distribution in the cathode gas diffusion layer based on the variational principle. First, the optimization equations for maximizing the total oxygen mass flux diffused through the cathode gas diffusion layer are derived with the constraints of the momentum conservation, the species conservation and the specified average porosity. Then, the application of a typical high-temperature proton exchange membrane fuel cell with twelve parallel flow channels gives the optimized three-dimensional non-uniform porosity distribution that could increase the current density at 0.2 V by 13.7% and the maximum power density by 10.0%. Besides, the optimized porosity distribution also improves the uniformity of oxygen mass fraction field and the current density distribution. Finally, seven design schemes with in-plane non-uniform porosity distribution or thickness-direction linear gradient porosity are proposed and evaluated. The results indicate that the optimized porosity distribution has the best performance, followed by the in-plane non-uniform porosity, and the linear gradient porosity along the thickness direction shows the weakest improvement. This finding further demonstrates the rationality and necessity of the proposed optimization model.

Suggested Citation

  • Li, Yi & Yuan, Fang & Weng, Rengang & Xi, Fang & Liu, Wei, 2021. "Variational-principle-optimized porosity distribution in gas diffusion layer of high-temperature PEM fuel cells," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s036054422101598x
    DOI: 10.1016/j.energy.2021.121350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101598X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121350?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    2. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    3. Pourrahmani, Hossein & Siavashi, Majid & Moghimi, Mahdi, 2019. "Design optimization and thermal management of the PEMFC using artificial neural networks," Energy, Elsevier, vol. 182(C), pages 443-459.
    4. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    5. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    6. Yuan, Fang & Chen, Qun, 2011. "Two energy conservation principles in convective heat transfer optimization," Energy, Elsevier, vol. 36(9), pages 5476-5485.
    7. Dong, Pengcheng & Xie, Gongnan & Ni, Meng, 2021. "Improved energy performance of a PEM fuel cell by introducing discontinuous S-shaped and crescent ribs into flowing channels," Energy, Elsevier, vol. 222(C).
    8. Cai, Genchun & Liang, Yunmin & Liu, Zhichun & Liu, Wei, 2020. "Design and optimization of bio-inspired wave-like channel for a PEM fuel cell applying genetic algorithm," Energy, Elsevier, vol. 192(C).
    9. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    10. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    2. Faraji, Hossien & Nosratabadi, Seyyed Mostafa & Hemmati, Reza, 2022. "AC unbalanced and DC load management in multi-bus residential microgrid integrated with hybrid capacity resources," Energy, Elsevier, vol. 252(C).
    3. Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    3. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    4. Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).
    5. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    6. Pourrahmani, Hossein & Van herle, Jan, 2022. "Water management of the proton exchange membrane fuel cells: Optimizing the effect of microstructural properties on the gas diffusion layer liquid removal," Energy, Elsevier, vol. 256(C).
    7. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    8. Yonghua Cai & Jingming Sun & Fan Wei & Ben Chen, 2022. "Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(10), pages 1-19, May.
    9. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).
    10. Lan, Shunbo & Lin, Rui & Dong, Mengcheng & Lu, Kai & Lou, Mingyu, 2023. "Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance," Energy, Elsevier, vol. 266(C).
    11. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    12. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    13. Sun, Yun & Lin, Yixiong & Wang, Qinglian & Yang, Chen & Yin, Wang & Wan, Zhongmin & Qiu, Ting, 2024. "Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell," Energy, Elsevier, vol. 290(C).
    14. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    15. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    16. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    17. Qiu, Diankai & Peng, Linfa & Yi, Peiyun & Lehnert, Werner & Lai, Xinmin, 2021. "Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).
    20. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s036054422101598x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.