IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p839-870d23497.html
   My bibliography  Save this article

Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise

Author

Listed:
  • Victor Fernandez-Villace

    (Von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, Rhode-St-Genèse, Belgium)

  • Guillermo Paniagua

    (Von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, Rhode-St-Genèse, Belgium)

Abstract

Efficient high speed propulsion requires exploiting the cooling capability of the cryogenic fuel in the propulsion cycle. This paper presents the numerical model of a combined cycle engine while in air turbo-rocket configuration. Specific models of the various heat exchanger modules and the turbomachinery elements were developed to represent the physical behavior at off-design operation. The dynamic nature of the model allows the introduction of the engine control logic that limits the operation of certain subcomponents and extends the overall engine operational envelope. The specific impulse and uninstalled thrust are detailed while flying a determined trajectory between Mach 2.5 and 5 for varying throttling levels throughout the operational envelope.

Suggested Citation

  • Victor Fernandez-Villace & Guillermo Paniagua, 2013. "Numerical Model of a Variable-Combined-Cycle Engine for Dual Subsonic and Supersonic Cruise," Energies, MDPI, vol. 6(2), pages 1-32, February.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:839-870:d:23497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/839/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    2. Szymon Fulara & Maciej Chmielewski & Marian Gieras, 2020. "Variable Geometry in Miniature Gas Turbine for Improved Performance and Reduced Environmental Impact," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    4. Dong, Pengcheng & Tang, Hailong & Chen, Min & Zou, Zhengping, 2018. "Overall performance design of paralleled heat release and compression system for hypersonic aeroengine," Applied Energy, Elsevier, vol. 220(C), pages 36-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:839-870:d:23497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.