IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v154y2018icp96-109.html
   My bibliography  Save this article

Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles

Author

Listed:
  • Zhao, Wei
  • Huang, Chen
  • Zhao, Qingjun
  • Ma, Yingqun
  • Xu, Jianzhong

Abstract

A novel Pre-cooled and Fuel-rich Pre-burned Mixed-flow Turbofan (PFPMT) cycle is presented for reusable high speed vehicles based on practical technologies to reduce the travelling time of long distance flights. The motivation and the working principle of the PFPMT are explained in detail. A performance simulation model for the PFPMT cycle is established with the assumption of equilibrium fuel rich gas as the working fluid in the gas generator. Then parametric cycle studies are performed with the variation of bypass ratio, fuel/air ratio, core compressor pressure ratio and bypass fan pressure ratio at the flight Mach number of 0 and 5 respectively. The interrelationships between cycle parameters and their effects on cycle performance are discussed. Based on the parametric analysis, cycle parameters for a practical PFPMT engine are suggested for the flight speeds of Mach 0, 3 and 5 respectively. The predicted engine performance shows that the PFPMT concept exhibits a competitive specific impulse with respect to an ATR GG engine and an enhanced thrust to weight ratio with respect to an ATREX engine, and might be a promising propulsion system for high speed air-breathing flying vehicles.

Suggested Citation

  • Zhao, Wei & Huang, Chen & Zhao, Qingjun & Ma, Yingqun & Xu, Jianzhong, 2018. "Performance analysis of a pre-cooled and fuel-rich pre-burned mixed-flow turbofan cycle for high speed vehicles," Energy, Elsevier, vol. 154(C), pages 96-109.
  • Handle: RePEc:eee:energy:v:154:y:2018:i:c:p:96-109
    DOI: 10.1016/j.energy.2018.04.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Chun-wei & Wang, Hao & Ji, Xing-xing & Li, Xue-song, 2016. "Development and application of a thermodynamic-cycle performance analysis method of a three-shaft gas turbine," Energy, Elsevier, vol. 112(C), pages 307-321.
    2. Fernández-Villacé, Víctor & Paniagua, Guillermo, 2013. "On the exergetic effectiveness of combined-cycle engines for high speed propulsion," Energy, Elsevier, vol. 51(C), pages 382-394.
    3. Amati, V. & Bruno, C. & Simone, D. & Sciubba, E., 2008. "Exergy analysis of hypersonic propulsion systems: Performance comparison of two different scramjet configurations at cruise conditions," Energy, Elsevier, vol. 33(2), pages 116-129.
    4. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Li & Chen, Min & Tang, Hailong & Zhang, Jiyuan, 2024. "Performance evaluation of multicombustor engine for Mach3+-Level propulsion system," Energy, Elsevier, vol. 295(C).
    2. Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
    3. Aygun, Hakan & Turan, Onder, 2023. "Analysis of cruise conditions on energy, exergy and NOx emission parameters of a turbofan engine for middle-range aircraft," Energy, Elsevier, vol. 267(C).
    4. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    5. Wang, Cong & Cheng, Kunlin & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Performance comparison of three chemical precooled turbine engine cycles using methanol and n-decane as the precooling fuels," Energy, Elsevier, vol. 249(C).
    6. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    7. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    8. Pan, Xin & Xiong, Yuefei & Wang, Cong & Qin, Jiang & Zhang, Silong & Bao, Wen, 2022. "Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel," Energy, Elsevier, vol. 248(C).
    9. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    10. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
    11. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    12. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    2. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    3. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    4. Li, Xiaojie & Huang, Xiaobin & Liu, Hong & Du, Jianke, 2020. "Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation," Energy, Elsevier, vol. 195(C).
    5. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    6. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    7. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    8. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
    9. Yucer, Cem Tahsin, 2016. "Thermodynamic analysis of the part load performance for a small scale gas turbine jet engine by using exergy analysis method," Energy, Elsevier, vol. 111(C), pages 251-259.
    10. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    11. Liu, Yunfeng & Han, Xin & Zhang, Zijian, 2024. "Study on the propulsive performance of oblique detonation engine," Energy, Elsevier, vol. 292(C).
    12. ZhiTan Liu & XiaoDong Ren & ZhiYuan Yan & HongFei Zhu & Tao Zhang & Wei Zhu & XueSong Li, 2019. "Effect of Inlet Air Heating on Gas Turbine Efficiency under Partial Load," Energies, MDPI, vol. 12(17), pages 1-11, August.
    13. Hassan, H.Z., 2013. "Evaluation of the local exergy destruction in the intake and fan of a turbofan engine," Energy, Elsevier, vol. 63(C), pages 245-251.
    14. Fernández-Villacé, Víctor & Paniagua, Guillermo, 2013. "On the exergetic effectiveness of combined-cycle engines for high speed propulsion," Energy, Elsevier, vol. 51(C), pages 382-394.
    15. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    16. Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
    17. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    18. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    19. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
    20. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:154:y:2018:i:c:p:96-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.