IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp306-315.html
   My bibliography  Save this article

Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions

Author

Listed:
  • Zhou, Lei
  • Hua, Jianxiong
  • Liu, Feng
  • Liu, Fengnian
  • Feng, Dengquan
  • Wei, Haiqiao

Abstract

Internal exhaust gas recirculation (iEGR) is one of the effective methods to improve combustion stability of gasoline compression ignition (GCI) engine under low load conditions. However, the heating effect to the ambient gas, the dilution effect to O2 concentration, and the changing of heat capacity, which are caused by introducing iEGR into cylinder, have complicated influences on combustion process. The present work comprehensively investigates the competitive relationship between heating effect and dilution & heat capacity effect on combustion characteristics in GCI engine under different engine loads. Under low load conditions, there is a competitive relationship between heating effect and dilute & heat capacity effect of iEGR on start of combustion (SoC) and burning rate. The burning rate firstly rises and then decreases as iEGR ratio increases from low to high due to the competitive relationship. However, the SoC is controlled by both fuel distribution and the competitive relationship. In addition, under idle conditions, the heating effect plays the dominant role in combustion process and improves the combustion stability. In this way, the low load limit has been successfully extended by using high iEGR ratio. Meanwhile, the idling fuel consumption per unit displacement reaches the same level of commercial vehicles'.

Suggested Citation

  • Zhou, Lei & Hua, Jianxiong & Liu, Feng & Liu, Fengnian & Feng, Dengquan & Wei, Haiqiao, 2018. "Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions," Energy, Elsevier, vol. 164(C), pages 306-315.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:306-315
    DOI: 10.1016/j.energy.2018.08.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
    2. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    3. Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin, 2016. "Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends," Energy, Elsevier, vol. 97(C), pages 105-112.
    4. Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
    5. Chen, Tao & Xie, Hui & Li, Le & Zhang, Lianfang & Wang, Xinyan & Zhao, Hua, 2014. "Methods to achieve HCCI/CAI combustion at idle operation in a 4VVAS gasoline engine," Applied Energy, Elsevier, vol. 116(C), pages 41-51.
    6. Agarwal, Deepak & Singh, Shrawan Kumar & Agarwal, Avinash Kumar, 2011. "Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine," Applied Energy, Elsevier, vol. 88(8), pages 2900-2907, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
    2. Hua, Jianxiong & Song, Yuntong & Zhou, Lei & Liu, Fengnian & Wei, Haiqiao, 2021. "Operation strategy optimization of lean combustion using turbulent jet ignition at different engine loads," Applied Energy, Elsevier, vol. 302(C).
    3. Ardebili, Seyed Mohammad Safieddin & Kocakulak, Tolga & Aytav, Emre & Calam, Alper, 2022. "Investigation of the effect of JP-8 fuel and biodiesel fuel mixture on engine performance and emissions by experimental and statistical methods," Energy, Elsevier, vol. 254(PA).
    4. Nguyen Xuan Khoa & Ocktaeck Lim, 2022. "A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine," Energies, MDPI, vol. 15(3), pages 1-21, February.
    5. Hunicz, Jacek & Mikulski, Maciej & Geca, Michal S. & Rybak, Arkadiusz, 2020. "An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    2. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    5. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    6. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
    7. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    8. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    9. Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
    10. Park, Youngsoo & Bae, Choongsik, 2014. "Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine," Applied Energy, Elsevier, vol. 133(C), pages 308-316.
    11. Wu, Shaohua & Lao, Chung Ting & Akroyd, Jethro & Mosbach, Sebastian & Yang, Wenming & Kraft, Markus, 2020. "A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines," Applied Energy, Elsevier, vol. 258(C).
    12. Jain, Ayush & Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2017. "Effect of split fuel injection and EGR on NOx and PM emission reduction in a low temperature combustion (LTC) mode diesel engine," Energy, Elsevier, vol. 122(C), pages 249-264.
    13. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    14. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    15. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    16. Khoa, Nguyen Xuan & Lim, Ocktaeck, 2019. "The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine," Applied Energy, Elsevier, vol. 248(C), pages 54-63.
    17. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    18. Tadeusz Dziubak & Sebastian Dominik Dziubak, 2022. "A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation," Energies, MDPI, vol. 15(3), pages 1-50, February.
    19. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    20. Wang, Libing & Wu, Zengyang & Ahmed, Ahfaz & Badra, Jihad A. & Sarathy, S. Mani & Roberts, William L. & Fang, Tiegang, 2019. "Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate," Energy, Elsevier, vol. 170(C), pages 375-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:306-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.