IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8096-d1301360.html
   My bibliography  Save this article

Frictional Losses of Ring Pack in SI and HCCI Engine

Author

Listed:
  • Grzegorz Koszalka

    (Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland)

  • Andrzej Wolff

    (Faculty of Transport, Warsaw University of Technology, 00-662 Warsaw, Poland)

Abstract

The vast majority of research dedicated to enhancing the homogenous charge compression ignition (HCCI) low-temperature combustion system is focused on improving controllability, efficiency and emissions. This article aims to assess the impact of HCCI combustion on the operation of the piston ring system. Utilizing the measured pressures in the combustion chamber of a single-cylinder research engine operating in spark ignition (SI) and HCCI modes at various loads, simulations were carried out using an advanced ring pack model. This model integrates the gas flow, ring dynamics and ring mixed lubrication models. Simulations revealed that differences in the pressure above the piston between the HCCI and SI combustion significantly influence ring pack performance. The predicted energy losses due to the friction of piston rings against the cylinder liner are up to 5% higher in the HCCI engine than in the SI engine. This identified drawback diminishes the advantages of the HCCI engine resulting from higher thermal efficiency, and efforts should be made to minimize this negative impact.

Suggested Citation

  • Grzegorz Koszalka & Andrzej Wolff, 2023. "Frictional Losses of Ring Pack in SI and HCCI Engine," Energies, MDPI, vol. 16(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8096-:d:1301360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Hunicz, Jacek & Mikulski, Maciej & Geca, Michal S. & Rybak, Arkadiusz, 2020. "An applicable approach to mitigate pressure rise rate in an HCCI engine with negative valve overlap," Applied Energy, Elsevier, vol. 257(C).
    3. Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
    4. Zhang, Y. & Zhao, H., 2014. "Investigation of combustion, performance and emission characteristics of 2-stroke and 4-stroke spark ignition and CAI/HCCI operations in a DI gasoline," Applied Energy, Elsevier, vol. 130(C), pages 244-255.
    5. Sebastián H. Quintana & Andrés D. Morales Rojas & Iván D. Bedoya, 2023. "Experimental and Numerical Evaluation of an HCCI Engine Fueled with Biogas for Power Generation under Sub-Atmospheric Conditions," Energies, MDPI, vol. 16(17), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
    2. Moradi, Jamshid & Gharehghani, Ayat & Mirsalim, Mostafa, 2020. "Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine," Applied Energy, Elsevier, vol. 276(C).
    3. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).
    4. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    5. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    6. Charu Vikram Srivatsa & Shah Saud Alam & Bailey Spickler & Christopher Depcik, 2024. "Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine," Energies, MDPI, vol. 17(16), pages 1-26, August.
    7. Jung, Dongwon & Iida, Norimasa, 2015. "Closed-loop control of HCCI combustion for DME using external EGR and rebreathed EGR to reduce pressure-rise rate with combustion-phasing retard," Applied Energy, Elsevier, vol. 138(C), pages 315-330.
    8. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    9. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    10. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    11. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Chen, Ying-jie & Tan, Pi-qiang & Duan, Li-shuang & Liu, Yang & Lou, Di-ming & Hu, Zhi-yuan, 2023. "Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration," Energy, Elsevier, vol. 268(C).
    13. Yaozong Li & Han Wu & Yanli Liu & Lu Zhang & Yongping Qiang & Wei Liu & Jinlong Liu & Honglin Bai & Caifeng Hao & Yang Li, 2022. "Study on Engine Performance and Combustion System Optimization of a Poppet-Valve Two-Stroke Diesel Engine," Energies, MDPI, vol. 15(10), pages 1-21, May.
    14. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
    15. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    16. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    17. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    18. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & Zhang, Qiankun & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion – Part Ⅰ: Characteristics from medium to ," Energy, Elsevier, vol. 246(C).
    19. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    20. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8096-:d:1301360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.