IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221015425.html
   My bibliography  Save this article

Modeling all alternative solutions for highly renewable energy systems

Author

Listed:
  • Pedersen, Tim T.
  • Victoria, Marta
  • Rasmussen, Morten G.
  • Andresen, Gorm B.

Abstract

As the world is transitioning towards highly renewable energy systems, advanced tools are needed to analyze the complex energy networks. Energy system design is, however, challenged by real-world objective functions consisting of a blurry mix of technical and socioeconomic agendas, with limitations that cannot always be clearly stated. As a result, economically suboptimal solutions will likely be preferable. Here, a method capable of determining the continuum containing all economically near-optimal solutions is presented, moving the field of energy system modeling from discrete solutions to a new era where continuous solution ranges are available. The proposed method is applied to study a range of technical and socioeconomic metrics on a model of the European electricity system. The near-optimal region is found to be relatively flat allowing for solutions that are slightly more expensive than the optimum but better in terms of equality, land use, and implementation time.

Suggested Citation

  • Pedersen, Tim T. & Victoria, Marta & Rasmussen, Morten G. & Andresen, Gorm B., 2021. "Modeling all alternative solutions for highly renewable energy systems," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015425
    DOI: 10.1016/j.energy.2021.121294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121294?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Rui & Kuriyan, Kamal & Kong, Qingyuan & Zhang, Zhihui & Shah, Nilay & Li, Ning & Zhao, Yingru, 2019. "Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Maurizio Gargiulo & Brian Ó Gallachóir, 2013. "Long-term energy models: Principles, characteristics, focus, and limitations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 158-177, March.
    4. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    5. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Andresen, Gorm B. & Søndergaard, Anders A. & Greiner, Martin, 2015. "Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis," Energy, Elsevier, vol. 93(P1), pages 1074-1088.
    7. Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
    8. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    9. Jan-Philipp Sasse & Evelina Trutnevyte, 2020. "Regional impacts of electricity system transition in Central Europe until 2035," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    10. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    11. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    12. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    13. Zhu, K. & Victoria, M. & Andresen, G.B. & Greiner, M., 2020. "Impact of climatic, technical and economic uncertainties on the optimal design of a coupled fossil-free electricity, heating and cooling system in Europe," Applied Energy, Elsevier, vol. 262(C).
    14. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    15. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    2. Chen, Yi-kuang & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2022. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios," Applied Energy, Elsevier, vol. 310(C).
    3. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    4. Schwaeppe, Henrik & Thams, Marten Simon & Walter, Julian & Moser, Albert, 2024. "Finding better alternatives: Shadow prices of near-optimal solutions in energy system optimization modeling," Energy, Elsevier, vol. 292(C).
    5. Javed, Muhammad Shahzad & Jurasz, Jakub & Dąbek, Paweł Bronisław & Ma, Tao & Jadwiszczak, Piotr & Niemierka, Elżbieta, 2023. "Green manufacturing facilities – Meeting CO2 emission targets considering power and heat supply," Applied Energy, Elsevier, vol. 350(C).
    6. Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
    7. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    8. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    9. Dubois, Antoine & Dumas, Jonathan & Thiran, Paolo & Limpens, Gauthier & Ernst, Damien, 2023. "Multi-objective near-optimal necessary conditions for multi-sectoral planning," Applied Energy, Elsevier, vol. 350(C).
    10. Annika Gillich & Kai Hufendiek, 2022. "Asset Profitability in the Electricity Sector: An Iterative Approach in a Linear Optimization Model," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    12. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    13. Lombardi, Francesco & Pickering, Bryn & Pfenninger, Stefan, 2023. "What is redundant and what is not? Computational trade-offs in modelling to generate alternatives for energy infrastructure deployment," Applied Energy, Elsevier, vol. 339(C).
    14. Bobrowski, Jakub & Łaska, Grażyna, 2023. "Using spatial elimination and ranking methods in the renewable energy investment parcel search process," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    2. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    3. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    4. Chen, Yi-kuang & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2022. "Balancing GHG mitigation and land-use conflicts: Alternative Northern European energy system scenarios," Applied Energy, Elsevier, vol. 310(C).
    5. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    6. Kan, Xiaoming & Reichenberg, Lina & Hedenus, Fredrik, 2021. "The impacts of the electricity demand pattern on electricity system cost and the electricity supply mix: A comprehensive modeling analysis for Europe," Energy, Elsevier, vol. 235(C).
    7. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    8. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    9. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    10. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
    11. Reichenberg, Lina & Hedenus, Fredrik & Mattsson, Niclas & Verendel, Vilhelm, 2022. "Deep decarbonization and the supergrid – Prospects for electricity transmission between Europe and China," Energy, Elsevier, vol. 239(PE).
    12. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    15. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    16. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    17. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    18. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    19. Cole, Wesley & Antonysamy, Adithya & Brown, Patrick & Sergi, Brian & Mai, Trieu & Denholm, Paul, 2023. "How much might it cost to decarbonize the power sector? It depends on the metric," Energy, Elsevier, vol. 276(C).
    20. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221015425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.