IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.04821.html
   My bibliography  Save this paper

A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios

Author

Listed:
  • Leonard Goke
  • Jens Weibezahn
  • Christian von Hirschhausen

Abstract

The development of energy systems is not a technocratic process but equally shaped by societal and cultural forces. Key instruments in this process are model-based scenarios describing a future energy system. Applying the concept of fictional expectations from social economics, we show how energy scenarios are tools to channel political, economic, and academic efforts into a common direction. To impact decision-making, scenarios do not have to be accurate -- but credible and evoke coherent expectations in diverse stakeholders. To gain credibility, authors of scenarios engage with stakeholders and appeal to the authority of institutions or quantitative methods. From these insights on energy scenarios, we draw consequences for developing and applying planning models, the quantitative tool energy scenarios build on. Planning models should be open and accessible to facilitate stakeholder participation, avoid needlessly complex methods to minimize expert bias and aim for a large scope to be policy relevant. Rather than trying to simulate social preferences and convictions within engineering models, scenario development should pursue broad and active participation of all stakeholders, including citizens.

Suggested Citation

  • Leonard Goke & Jens Weibezahn & Christian von Hirschhausen, 2021. "A collective blueprint, not a crystal ball: How expectations and participation shape long-term energy scenarios," Papers 2112.04821, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2112.04821
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.04821
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Midttun, Atle & Baumgartner, Thomas, 1986. "Negotiating energy futures The politics of energy forecasting," Energy Policy, Elsevier, vol. 14(3), pages 219-241, June.
    2. Donald MacKenzie, 2006. "An Engine, Not a Camera: How Financial Models Shape Markets," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262134608, April.
    3. Leonard Göke & Claudia Kemfert & Mario Kendziorski & Christian von Hirschhausen, 2021. "100% Renewable Energy for Germany: Coordinated Expansion Planning Needed," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 11(29/30), pages 209-215.
    4. David I. Stern, 2017. "How accurate are energy intensity projections?," Climatic Change, Springer, vol. 143(3), pages 537-545, August.
    5. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    6. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    7. Oei, Pao-Yu & Burandt, Thorsten & Hainsch, Karlo & Löffler, Konstantin & Kemfert, Claudia, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 103-120.
    8. Dmitrii Bogdanov & Michael Child & Christian Breyer, 2019. "Reply to ‘Bias in energy system models with uniform cost of capital assumption’," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    9. Ergen, Timur, 2015. "Große Hoffnungen und brüchige Koalitionen: Industrie, Politik und die schwierige Durchsetzung der Photovoltaik," Schriften aus dem Max-Planck-Institut für Gesellschaftsforschung Köln, Max Planck Institute for the Study of Societies, volume 83, number 83.
    10. Erik Laes & Leen Gorissen & Frank Nevens, 2014. "A Comparison of Energy Transition Governance in Germany, The Netherlands and the United Kingdom," Sustainability, MDPI, vol. 6(3), pages 1-24, February.
    11. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    12. Krumm, Alexandra & Süsser, Diana & Blechinger, Philipp, 2022. "Modelling social aspects of the energy transition: What is the current representation of social factors in energy models?," Energy, Elsevier, vol. 239(PA).
    13. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    14. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    15. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    16. Isabell Braunger and Christian Hauenstein, 2020. "How Incumbent Cultural and Cognitive Path Dependencies Constrain the 'Scenario Cone': Reliance on Carbon Dioxide Removal due to Techno-bias," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 137-154.
    17. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    18. Pao-Yu Oei, Thorsten Burandt, Karlo Hainsch, Konstantin Löffler and Claudia Kemfert, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 103-120.
    19. Peter Lopion & Peter Markewitz & Detlef Stolten & Martin Robinius, 2019. "Cost Uncertainties in Energy System Optimization Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects," Energies, MDPI, vol. 12(20), pages 1-12, October.
    20. Christian von Hirschhausen & Clemens Gerbaulet & Claudia Kemfert & Casimir Lorenz & Pao-Yu Oei (ed.), 2018. "Energiewende "Made in Germany"," Springer Books, Springer, number 978-3-319-95126-3, December.
    21. Stirling, Andrew, 1997. "Limits to the value of external costs," Energy Policy, Elsevier, vol. 25(5), pages 517-540, April.
    22. W. H. G. Armytage, 1956. "J. A. Etzler, an American Utopist," American Journal of Economics and Sociology, Wiley Blackwell, vol. 16(1), pages 83-88, October.
    23. Florian Landis & Adriana Marcucci & Sebastian Rausch & Ramachandran Kannan & Lucas Bretschger, 2019. "Multi-model comparison of Swiss decarbonization scenarios," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-18, December.
    24. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    25. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    26. Stefan Kruger Nielsen & Kenneth Karlsson, 2007. "Energy scenarios: a review of methods, uses and suggestions for improvement," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 27(3), pages 302-322.
    27. Upham, Paul & Klapper, Rita & Carney, Sebastian, 2016. "Participatory energy scenario development as dramatic scripting: A structural narrative analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 47-56.
    28. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    29. Sergey Paltsev, 2017. "Energy scenarios: the value and limits of scenario analysis," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    30. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    31. Pedersen, Tim T. & Victoria, Marta & Rasmussen, Morten G. & Andresen, Gorm B., 2021. "Modeling all alternative solutions for highly renewable energy systems," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    2. Grochowicz, Aleksander & van Greevenbroek, Koen & Benth, Fred Espen & Zeyringer, Marianne, 2023. "Intersecting near-optimal spaces: European power systems with more resilience to weather variability," Energy Economics, Elsevier, vol. 118(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    5. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    6. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    7. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2019. "Importance subsampling: improving power system planning under climate-based uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    10. Burandt, Thorsten, 2021. "Analyzing the necessity of hydrogen imports for net-zero emission scenarios in Japan," Applied Energy, Elsevier, vol. 298(C).
    11. Süsser, Diana & Gaschnig, Hannes & Ceglarz, Andrzej & Stavrakas, Vassilis & Flamos, Alexandros & Lilliestam, Johan, 2022. "Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models," Energy, Elsevier, vol. 239(PB).
    12. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    13. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    14. Claudia Kemfert, 2021. "A Real Chance for the Transatlantic Partnership on Climate Policy," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(1), pages 20-22, January.
    15. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    16. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    17. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.
    18. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    20. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.04821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.