IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924005014.html
   My bibliography  Save this article

The role of regional renewable energy integration in electricity decarbonization—A case study of Japan

Author

Listed:
  • Onodera, Hiroaki
  • Delage, Rémi
  • Nakata, Toshihiko

Abstract

Decarbonization strategies depend critically on the integration of region-specific renewable energy and social acceptance, yet their roles still need to be clarified. This study designs a regional-integrated electricity system and assesses the impact of regional decisions associated with renewable energy on cost-effective national decarbonization, using Japan as a case study owing to its active engagement in regional decarbonization. A high spatial resolution renewable electricity system model that explicitly considers all 1741 Japanese municipalities and employs a hierarchical optimization approach is developed. Based on the model, the opportunity cost of limiting renewable energy development is quantified for 30 representative municipalities. The results highlight that restrictions on municipal renewable energy can increase annual system costs by hundreds of millions of euros and national electricity costs by up to 0.4%, although it varies by region and energy source. This suggests that widespread opposition to renewables could be a significant barrier to cost-effective decarbonization. However, the impact of solar photovoltaic (PV) tends to be slight. In conclusion, investments in social acceptance of region-specific renewables can minimize opportunity losses and reduce system costs. Nonetheless, relocating the project to another region is possibly more cost-effective for solar PV.

Suggested Citation

  • Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924005014
    DOI: 10.1016/j.apenergy.2024.123118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
    2. Nathan E. Hultman & Leon Clarke & Carla Frisch & Kevin Kennedy & Haewon McJeon & Tom Cyrs & Pete Hansel & Paul Bodnar & Michelle Manion & Morgan R. Edwards & Ryna Cui & Christina Bowman & Jessie Lund , 2020. "Fusing subnational with national climate action is central to decarbonization: the case of the United States," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2018. "The nationwide characterization and modeling of local energy systems: Quantifying the role of decentralized generation and energy resources in future communities," Energy Policy, Elsevier, vol. 118(C), pages 516-533.
    4. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    5. Naoya Nagano & Rémi Delage & Toshihiko Nakata, 2021. "Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan," Energies, MDPI, vol. 14(10), pages 1-26, May.
    6. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    7. R. McKenna & J. M. Weinand & I. Mulalic & S. Petrović & K. Mainzer & T. Preis & H. S. Moat, 2021. "Scenicness assessment of onshore wind sites with geotagged photographs and impacts on approval and cost-efficiency," Nature Energy, Nature, vol. 6(6), pages 663-672, June.
    8. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    9. Costa-Campi, Maria Teresa & Davi-Arderius, Daniel & Trujillo-Baute, Elisa, 2020. "Locational impact and network costs of energy transition: Introducing geographical price signals for new renewable capacity," Energy Policy, Elsevier, vol. 142(C).
    10. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    11. Philipp Beiter & Trieu Mai & Matthew Mowers & John Bistline, 2023. "Expanded modelling scenarios to understand the role of offshore wind in decarbonizing the United States," Nature Energy, Nature, vol. 8(11), pages 1240-1249, November.
    12. Bañuelos-Ruedas, F. & Angeles-Camacho, C. & Rios-Marcuello, S., 2010. "Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2383-2391, October.
    13. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    14. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    15. Jan-Philipp Sasse & Evelina Trutnevyte, 2020. "Regional impacts of electricity system transition in Central Europe until 2035," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    16. Jann Michael Weinand & Fabian Scheller & Russell McKenna, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Papers 2011.05915, arXiv.org.
    17. Pesaran H.A, Mahmoud & Huy, Phung Dang & Ramachandaramurthy, Vigna K., 2017. "A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 293-312.
    18. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2019. "Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation," Applied Energy, Elsevier, vol. 254(C).
    19. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    20. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    21. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    22. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    23. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    24. Zhenyu Zhuo & Ershun Du & Ning Zhang & Chris P. Nielsen & Xi Lu & Jinyu Xiao & Jiawei Wu & Chongqing Kang, 2022. "Cost increase in the electricity supply to achieve carbon neutrality in China," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    25. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    26. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    27. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
    28. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    29. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    3. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    4. Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
    5. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    6. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    8. Gulagi, Ashish & Alcanzare, Myron & Bogdanov, Dmitrii & Esparcia, Eugene & Ocon, Joey & Breyer, Christian, 2021. "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    10. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    11. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    12. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    14. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    15. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    16. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    17. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    18. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).
    20. Rey-Costa, Elona & Elliston, Ben & Green, Donna & Abramowitz, Gab, 2023. "Firming 100% renewable power: Costs and opportunities in Australia's National Electricity Market," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924005014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.