Machine learning based very short term load forecasting of machine tools
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2020.115440
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
- Pengwei Su & Xue Tian & Yan Wang & Shuai Deng & Jun Zhao & Qingsong An & Yongzhen Wang, 2017. "Recent Trends in Load Forecasting Technology for the Operation Optimization of Distributed Energy System," Energies, MDPI, vol. 10(9), pages 1, August.
- Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
- Clements,Michael & Hendry,David, 1998.
"Forecasting Economic Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521632423, November.
- Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, November.
- Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
- Reza Imani Asrai & Stephen T. Newman & Aydin Nassehi, 2018. "A mechanistic model of energy consumption in milling," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 642-659, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
- Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
- Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Stefan Ungureanu & Vasile Topa & Andrei Cristinel Cziker, 2021. "Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market," Energies, MDPI, vol. 14(21), pages 1-26, October.
- Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
- Henry Ekwaro-Osire & Dennis Bode & Klaus-Dieter Thoben & Jan-Hendrik Ohlendorf, 2022. "Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
- Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
- Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Hendry, David F. & Clements, Michael P., 2003.
"Economic forecasting: some lessons from recent research,"
Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
- David Hendry & Michael P. Clements, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Papers 2002-W11, Economics Group, Nuffield College, University of Oxford.
- Clements, Michael P. & Hendry, David F., 2001. "Economic forecasting: some lessons from recent research," Working Paper Series 82, European Central Bank.
- Hendry, David F & Michael P. Clements, 2002. "Economic Forecasting: Some Lessons from Recent Research," Royal Economic Society Annual Conference 2002 99, Royal Economic Society.
- David Hendry & Michael P. Clements & Department of Economics & University of Warwick, 2001. "Economic Forecasting: Some Lessons from Recent Research," Economics Series Working Papers 78, University of Oxford, Department of Economics.
- Lindh, Thomas & Malmberg, Bo, 2007.
"Demographically based global income forecasts up to the year 2050,"
International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
- Malmberg, Bo & Lindh, Thomas, 2004. "Demographically based global income forecasts up to the year 2050," Arbetsrapport 2004:7, Institute for Futures Studies.
- Flouris, Triant & Walker, Thomas, 2005. "Financial Comparisons Across Different Business Models in the Canadian Airline Industry," 46th Annual Transportation Research Forum, Washington, D.C., March 6-8, 2005 208157, Transportation Research Forum.
- Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
- Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015.
"Modeling Uncertainty in Climate Change: A Multi-Model Comparison,"
NBER Working Papers
21637, National Bureau of Economic Research, Inc.
- Gillingham, Kenneth & Nordhaus, William & Anthoff, David & Blanford, Geoffrey & Bosetti, Valentina & Christensen, Peter & McJeon, Haewon & Reilly, John & Sztorc, Paul, 2016. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," Conference papers 332720, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewan McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," Cowles Foundation Discussion Papers 2022, Cowles Foundation for Research in Economics, Yale University.
- Kenneth Gillingham & William Nordhaus & David Anthoff & Valentina Bosetti & Haewon McJeon & Geoffrey Blanford & Peter Christensen & John Reilly & Paul Sztorc, 2016. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," Working Papers 2016.13, Fondazione Eni Enrico Mattei.
- Gillingham, Kenneth & Nordhaus, William & Anthoff, David & Bosetti, Valentina & McJeon, Haewon & Blanford, Geoffrey & Christensen, Peter & Reilly, John & Sztorc, Paul, 2016. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," MITP: Mitigation, Innovation and Transformation Pathways 232219, Fondazione Eni Enrico Mattei (FEEM).
- Kenneth Gillingham & William Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," CESifo Working Paper Series 5538, CESifo.
- Bhattacharya, Prasad S. & Thomakos, Dimitrios D., 2008.
"Forecasting industry-level CPI and PPI inflation: Does exchange rate pass-through matter?,"
International Journal of Forecasting, Elsevier, vol. 24(1), pages 134-150.
- Dimitrios D. Thomakos & Prasad S. Bhattacharya, 2004. "Forecasting Industry-Level CPI and PPI Inflation: Does Exchange Rate Pass-Through Matter?," Econometric Society 2004 Australasian Meetings 293, Econometric Society.
- Bhattacharya, Prasad S. & Thomakos, Dimitrios D., 2006. "Forecasting industry-level CPI and PPI inflation: does exchange rate pass-through matter?," Working Papers eco_2006_10, Deakin University, Department of Economics.
- Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
- Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015.
"The information content of money and credit for US activity,"
Working Paper Series
1803, European Central Bank.
- Seitz, Franz & Albuquerque, Bruno & Baumann, Ursel, 2015. "The Information Content Of Money And Credit For US Activity," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113066, Verein für Socialpolitik / German Economic Association.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016.
"Forecasting US real private residential fixed investment using a large number of predictors,"
Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2013. "Forecasting the US Real Private Residential Fixed Investment Using Large Number of Predictors," Working Papers 201348, University of Pretoria, Department of Economics.
- Goodness C. Aye & Rangan Gupta & Stephen M. Miller & Mehmet Balcilar, 2014. "Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors," Working papers 2014-10, University of Connecticut, Department of Economics.
- Brüggemann, Ralf & Lütkepohl, Helmut, 2013.
"Forecasting contemporaneous aggregates with stochastic aggregation weights,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
- Ralf Brueggemann & Helmut Luetkepohl, 2011. "Forecasting Contemporaneous Aggregates with Stochastic Aggregation Weights," Economics Working Papers ECO2011/17, European University Institute.
- Ralf Brüggemann & Helmut Lütkepohl, 2011. "Forecasting Contemporaneous Aggregates with Stochastic Aggregation Weights," Working Paper Series of the Department of Economics, University of Konstanz 2011-23, Department of Economics, University of Konstanz.
- Wolfgang Polasek, 2013. "Forecast Evaluations for Multiple Time Series: A Generalized Theil Decomposition," Working Paper series 23_13, Rimini Centre for Economic Analysis.
- Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011.
"Evaluating Automatic Model Selection,"
Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
- Jennifer Castle & David Hendry & Jurgen A. Doornik, 2010. "Evaluating Automatic Model Selection," Economics Series Working Papers 474, University of Oxford, Department of Economics.
- Costantini, Mauro & Pappalardo, Carmine, 2010. "A hierarchical procedure for the combination of forecasts," International Journal of Forecasting, Elsevier, vol. 26(4), pages 725-743, October.
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014.
"Forecasting interest rates with shifting endpoints,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
- Dick van Dijk & Siem Jan Koopman & Michel van der Wel & Jonathan H. Wright, 2012. "Forecasting Interest Rates with Shifting Endpoints," Tinbergen Institute Discussion Papers 12-076/4, Tinbergen Institute.
More about this item
Keywords
Energy flexibility; Load forecasting; Machine tool; Machine learning; Feature engineering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309521. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.