IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2148-d843202.html
   My bibliography  Save this article

Short- and Medium-Term Power Demand Forecasting with Multiple Factors Based on Multi-Model Fusion

Author

Listed:
  • Qingqing Ji

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
    These authors contributed equally to this work.)

  • Shiyu Zhang

    (School of Information Science & Engineering, Yunnan University, Yunnan 650500, China
    These authors contributed equally to this work.)

  • Qiao Duan

    (Faculty of Humanities and Social Sciences, Beijing University of Technology, Beijing 100124, China)

  • Yuhan Gong

    (Fan Gongxiu Honors College, Beijing University of Technology, Beijing 100124, China)

  • Yaowei Li

    (School of Information Science & Engineering, Yunnan University, Yunnan 650500, China)

  • Xintong Xie

    (Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China)

  • Jikang Bai

    (Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China)

  • Chunli Huang

    (Faculty of Science, Beijing University of Technology, Beijing 100124, China)

  • Xu Zhao

    (Faculty of Science, Beijing University of Technology, Beijing 100124, China)

Abstract

With the continuous development of economy and society, power demand forecasting has become an important task of the power industry. Accurate power demand forecasting can promote the operation and development of the power supply industry. However, since power consumption is affected by a number of factors, it is difficult to accurately predict the power demand data. With the accumulation of data in the power industry, machine learning technology has shown great potential in power demand forecasting. In this study, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost) and light gradient boosting machine (LightGBM) are integrated by stacking to build an XLG-LR fusion model to predict power demand. Firstly, preprocessing was carried out on 13 months of electricity and meteorological data. Next, the hyperparameters of each model were adjusted and optimized. Secondly, based on the optimal hyperparameter configuration, a prediction model was built using the training set (70% of the data). Finally, the test set (30% of the data) was used to evaluate the performance of each model. Mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and goodness-of-fit coefficient (R^2) were utilized to analyze each model at different lengths of time, including their seasonal, weekly, and monthly forecast effect. Furthermore, the proposed fusion model was compared with other neural network models such as the GRU, LSTM and TCN models. The results showed that the XLG-LR model achieved the best prediction results at different time lengths, and at the same time consumed the least time compared to the neural network model. This method can provide a more reliable reference for the operation and dispatch of power enterprises and future power construction and planning.

Suggested Citation

  • Qingqing Ji & Shiyu Zhang & Qiao Duan & Yuhan Gong & Yaowei Li & Xintong Xie & Jikang Bai & Chunli Huang & Xu Zhao, 2022. "Short- and Medium-Term Power Demand Forecasting with Multiple Factors Based on Multi-Model Fusion," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2148-:d:843202
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    2. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    3. Xin Gao & Xiaobing Li & Bing Zhao & Weijia Ji & Xiao Jing & Yang He, 2019. "Short-Term Electricity Load Forecasting Model Based on EMD-GRU with Feature Selection," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    5. Zhang, Jingrui & Li, Zhuoyun & Wang, Beibei, 2021. "Within-day rolling optimal scheduling problem for active distribution networks by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing," Energy, Elsevier, vol. 223(C).
    6. Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shichao Huang & Jing Zhang & Yu He & Xiaofan Fu & Luqin Fan & Gang Yao & Yongjun Wen, 2022. "Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer," Energies, MDPI, vol. 15(10), pages 1-14, May.
    2. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    3. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    4. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    6. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    7. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    8. Ma, Yixiang & Yu, Lean & Zhang, Guoxing & Lu, Zhiming & Wu, Jiaqian, 2023. "Source-load uncertainty-based multi-objective multi-energy complementary optimal scheduling," Renewable Energy, Elsevier, vol. 219(P1).
    9. Meng, Ming & Niu, Dongxiao, 2011. "Modeling CO2 emissions from fossil fuel combustion using the logistic equation," Energy, Elsevier, vol. 36(5), pages 3355-3359.
    10. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    11. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    12. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    14. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).
    15. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    16. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    18. Xiwen Cui & Xinyu Guan & Dongyu Wang & Dongxiao Niu & Xiaomin Xu, 2022. "Can China Meet Its 2030 Total Energy Consumption Target? Based on an RF-SSA-SVR-KDE Model," Energies, MDPI, vol. 15(16), pages 1-13, August.
    19. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    20. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2148-:d:843202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.