IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp314-323.html
   My bibliography  Save this article

Dynamic operation and control of microgrid hybrid power systems

Author

Listed:
  • Ou, Ting-Chia
  • Hong, Chih-Ming

Abstract

This paper examines dynamic operation and control strategies for a microgrid hybrid wind–PV (photovoltaic)–FC (fuel cell) based power supply system. The system consists of the PV power, wind power, FC power, SVC (static var compensator) and an intelligent power controller. A simulation model for this hybrid energy system was developed using MATLAB/Simulink. An SVC was used to supply reactive power and regulate the voltage of the hybrid system. A GRNN (General Regression Neural Network) with an Improved PSO (Particle Swarm Optimization) algorithm, which has a non-linear characteristic, was applied to analyze the performance of the PV generation system. A high-performance on-line training RBFNSM (radial basis function network-sliding mode) algorithm was designed to derive the optimal turbine speed to extract maximum power from the wind. To achieve a fast and stable response for real power control, the intelligent controller consists of an RBFNSM and a GRNN for MPPT (maximum power point tracking) control. As a result, the validity of this paper was demonstrated through simulation of proposed algorithm.

Suggested Citation

  • Ou, Ting-Chia & Hong, Chih-Ming, 2014. "Dynamic operation and control of microgrid hybrid power systems," Energy, Elsevier, vol. 66(C), pages 314-323.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:314-323
    DOI: 10.1016/j.energy.2014.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, K.H. & Lai, T.M. & Lo, W.C. & To, W.M., 2012. "The application of dynamic modelling techniques to the grid-connected PV (photovoltaic) systems," Energy, Elsevier, vol. 46(1), pages 264-274.
    2. Bakić, Vukman & Pezo, Milada & Stevanović, Žana & Živković, Marija & Grubor, Borislav, 2012. "Dynamical simulation of PV/Wind hybrid energy conversion system," Energy, Elsevier, vol. 45(1), pages 324-328.
    3. Chakraborty, Uday Kumar, 2009. "Static and dynamic modeling of solid oxide fuel cell using genetic programming," Energy, Elsevier, vol. 34(6), pages 740-751.
    4. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    5. Perera, A.T.D. & Wickremasinghe, D.M.I.J. & Mahindarathna, D.V.S. & Attalage, R.A. & Perera, K.K.C.K. & Bartholameuz, E.M., 2012. "Sensitivity of internal combustion generator capacity in standalone hybrid energy systems," Energy, Elsevier, vol. 39(1), pages 403-411.
    6. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    7. Niknam, Taher & Golestaneh, Faranak & Shafiei, Mehdi, 2013. "Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm," Energy, Elsevier, vol. 49(C), pages 252-267.
    8. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    9. Kamel, Rashad M. & Chaouachi, Aymen & Nagasaka, Ken, 2010. "Wind power smoothing using fuzzy logic pitch controller and energy capacitor system for improvement Micro-Grid performance in islanding mode," Energy, Elsevier, vol. 35(5), pages 2119-2129.
    10. Hong, Chih-Ming & Ou, Ting-Chia & Lu, Kai-Hung, 2013. "Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system," Energy, Elsevier, vol. 50(C), pages 270-279.
    11. Bouilouta, A. & Mellit, A. & Kalogirou, S.A., 2013. "New MPPT method for stand-alone photovoltaic systems operating under partially shaded conditions," Energy, Elsevier, vol. 55(C), pages 1172-1185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    2. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    3. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    4. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    5. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    7. Bizon, Nicu, 2013. "Energy harvesting from the PV Hybrid Power Source," Energy, Elsevier, vol. 52(C), pages 297-307.
    8. Sheik Mohammed, S. & Devaraj, D. & Imthias Ahamed, T.P., 2016. "A novel hybrid Maximum Power Point Tracking Technique using Perturb & Observe algorithm and Learning Automata for solar PV system," Energy, Elsevier, vol. 112(C), pages 1096-1106.
    9. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    10. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    11. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    12. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Incorporating load variation and variable wind generation in service restoration plans for distribution systems," Energy, Elsevier, vol. 57(C), pages 682-691.
    13. Huang, Zhijia & Lu, Yuehong & Wei, Mengmeng & Liu, Jingjing, 2017. "Performance analysis of optimal designed hybrid energy systems for grid-connected nearly/net zero energy buildings," Energy, Elsevier, vol. 141(C), pages 1795-1809.
    14. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    15. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    16. Salah K. ElSayed & Sattam Al Otaibi & Yasser Ahmed & Essam Hendawi & Nagy I. Elkalashy & Ayman Hoballah, 2021. "Probabilistic Modeling and Equilibrium Optimizer Solving for Energy Management of Renewable Micro-Grids Incorporating Storage Devices," Energies, MDPI, vol. 14(5), pages 1-24, March.
    17. Karthikeyan, V. & Gupta, Rajesh, 2017. "Light-load efficiency improvement by extending ZVS range in DAB-bidirectional DC-DC converter for energy storage applications," Energy, Elsevier, vol. 130(C), pages 15-21.
    18. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    19. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    20. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:314-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.