Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127831
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
- Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
- Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
- Carlo Fezzi and Luca Mosetti, 2020. "Size Matters: Estimation Sample Length and Electricity Price Forecasting Accuracy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 231-254.
- Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
- Kazemzadeh, Mohammad-Rasool & Amjadian, Ali & Amraee, Turaj, 2020. "A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting," Energy, Elsevier, vol. 204(C).
- Kang, Ligai & Yuan, Xiaoxue & Sun, Kangjie & Zhang, Xu & Zhao, Jun & Deng, Shuai & Liu, Wei & Wang, Yongzhen, 2022. "Feed-forward active operation optimization for CCHP system considering thermal load forecasting," Energy, Elsevier, vol. 254(PB).
- Gao, Tian & Niu, Dongxiao & Ji, Zhengsen & Sun, Lijie, 2022. "Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm," Energy, Elsevier, vol. 261(PB).
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Ramanathan, Ramu & Engle, Robert & Granger, Clive W. J. & Vahid-Araghi, Farshid & Brace, Casey, 1997. "Shorte-run forecasts of electricity loads and peaks," International Journal of Forecasting, Elsevier, vol. 13(2), pages 161-174, June.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
- Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
- Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
- Hong, Tao & Pinson, Pierre & Fan, Shu, 2014.
"Global Energy Forecasting Competition 2012,"
International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
- Tao Hong & Pierre Pinson & Shu Fan, 2013. "Global Energy Forecasting Competition 2012," HSC Research Reports HSC/13/16, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
- Taylor, James W. & Buizza, Roberto, 2003. "Using weather ensemble predictions in electricity demand forecasting," International Journal of Forecasting, Elsevier, vol. 19(1), pages 57-70.
- De Felice, Matteo & Alessandri, Andrea & Catalano, Franco, 2015. "Seasonal climate forecasts for medium-term electricity demand forecasting," Applied Energy, Elsevier, vol. 137(C), pages 435-444.
- Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
- Fezzi, Carlo & Fanghella, Valeria, 2021. "Tracking GDP in real-time using electricity market data: Insights from the first wave of COVID-19 across Europe," European Economic Review, Elsevier, vol. 139(C).
- Niu, Dongxiao & Ji, Zhengsen & Li, Wanying & Xu, Xiaomin & Liu, Da, 2021. "Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization," Energy, Elsevier, vol. 234(C).
- OrtizBeviá, M.J. & RuizdeElvira, A. & Alvarez-García, F.J., 2014. "The influence of meteorological variability on the mid-term evolution of the electricity load," Energy, Elsevier, vol. 76(C), pages 850-856.
- Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
- Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
- Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
- Wei, Nan & Yin, Lihua & Li, Chao & Wang, Wei & Qiao, Weibiao & Li, Changjun & Zeng, Fanhua & Fu, Lingdi, 2022. "Short-term load forecasting using detrend singular spectrum fluctuation analysis," Energy, Elsevier, vol. 256(C).
- Rallapalli, Srinivasa Rao & Ghosh, Sajal, 2012. "Forecasting monthly peak demand of electricity in India—A critique," Energy Policy, Elsevier, vol. 45(C), pages 516-520.
- Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
- Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
- Abu-Shikhah, Nazih & Elkarmi, Fawwaz, 2011. "Medium-term electric load forecasting using singular value decomposition," Energy, Elsevier, vol. 36(7), pages 4259-4271.
- Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
- Li, Jinghua & Luo, Yichen & Wei, Shanyang, 2022. "Long-term electricity consumption forecasting method based on system dynamics under the carbon-neutral target," Energy, Elsevier, vol. 244(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023.
"Nowcasting industrial production using linear and non-linear models of electricity demand,"
Energy Economics, Elsevier, vol. 126(C).
- Giulio Galdi & Roberto Casarin & Davide Ferrari & Carlo Fezzi & Francesco Ravazzolo, 2022. "Nowcasting industrial production using linear and non-linear models of electricity demand," DEM Working Papers 2022/2, Department of Economics and Management.
- Chen, Yunxiao & Lin, Chaojing & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2024. "Day-ahead load forecast based on Conv2D-GRU_SC aimed to adapt to steep changes in load," Energy, Elsevier, vol. 302(C).
- Bujin Shi & Xinbo Zhou & Peilin Li & Wenyu Ma & Nan Pan, 2023. "An IHPO-WNN-Based Federated Learning System for Area-Wide Power Load Forecasting Considering Data Security Protection," Energies, MDPI, vol. 16(19), pages 1-20, October.
- Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
- Zhou, Kaile & Chu, Yibo & Hu, Rong, 2023. "Energy supply-demand interaction model integrating uncertainty forecasting and peer-to-peer energy trading," Energy, Elsevier, vol. 285(C).
- Monika Zimmermann & Florian Ziel, 2024. "Spatial Weather, Socio-Economic and Political Risks in Probabilistic Load Forecasting," Papers 2408.00507, arXiv.org, revised Dec 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Miller, J. Isaac & Nam, Kyungsik, 2022.
"Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions,"
Energy Economics, Elsevier, vol. 114(C).
- J. Isaac Miller & Kyungsik Nam, 2021. "Modeling Peak Electricity Demand: A Semiparametric Approach Using Weather-Driven Cross Temperature Response Functions," Working Papers 2112, Department of Economics, University of Missouri.
- Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.
- Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
- Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
- Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
- Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
- Fezzi, Carlo & Fanghella, Valeria, 2021. "Tracking GDP in real-time using electricity market data: Insights from the first wave of COVID-19 across Europe," European Economic Review, Elsevier, vol. 139(C).
- Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
- Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
- OrtizBeviá, M.J. & RuizdeElvira, A. & Alvarez-García, F.J., 2014. "The influence of meteorological variability on the mid-term evolution of the electricity load," Energy, Elsevier, vol. 76(C), pages 850-856.
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Day-Ahead Electricity Demand Forecasting Using a Novel Decomposition Combination Method," Energies, MDPI, vol. 16(18), pages 1-22, September.
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Torgeir Ericson, 2006. "Time-differentiated pricing and direct load control of residential electricity consumption," Discussion Papers 461, Statistics Norway, Research Department.
- Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
- Hasnain Iftikhar & Josue E. Turpo-Chaparro & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2023. "Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique," Energies, MDPI, vol. 16(18), pages 1-23, September.
- Carlo Fezzi & Valeria Fanghella, 2020. "Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity Market Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 885-900, August.
- Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
More about this item
Keywords
Load forecasting; Time series models; Neural networks; Weather; Temperature;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012252. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.