IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013207.html
   My bibliography  Save this article

Effect of boundary layer suction on performance of a 2 MW wind turbine

Author

Listed:
  • Moussavi, S. Abolfazl
  • Ghaznavi, Aidin

Abstract

Fixed geometry of wind turbine blades imposes some limitations on their operation, making them less efficient in off design conditions which is quite common in real operation. In this work, it is shown that flow separation is the main cause of efficiency drop in under rated wind speeds where the pitch regulation system is not effective. To resolve the problem, the boundary layer suction technique is proposed and studied on a MW class wind turbine. It is shown that by creating a narrow slot at the inboard section of the blade and applying different suction intensities, the power coefficient of the rotor can be improved by up to 8.1%. At the same time, the thrust coefficient variation is limited to only 3.8% which is well compensated by structural safety factors.

Suggested Citation

  • Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013207
    DOI: 10.1016/j.energy.2021.121072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guoqiang, Li & Shihe, Yi, 2020. "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator," Energy, Elsevier, vol. 212(C).
    2. Arnold, B. & Lutz, Th. & Krämer, E., 2018. "Design of a boundary-layer suction system for turbulent trailing-edge noise reduction of wind turbines," Renewable Energy, Elsevier, vol. 123(C), pages 249-262.
    3. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    4. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    5. D'Alessandro, Valerio & Clementi, Giacomo & Giammichele, Luca & Ricci, Renato, 2019. "Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers," Energy, Elsevier, vol. 170(C), pages 102-111.
    6. Nils Beck & Tim Landa & Arne Seitz & Loek Boermans & Yaolong Liu & Rolf Radespiel, 2018. "Drag Reduction by Laminar Flow Control," Energies, MDPI, vol. 11(1), pages 1-28, January.
    7. Mereu, Riccardo & Passoni, Stefano & Inzoli, Fabio, 2019. "Scale-resolving CFD modeling of a thick wind turbine airfoil with application of vortex generators: Validation and sensitivity analyses," Energy, Elsevier, vol. 187(C).
    8. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    9. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    10. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    11. Abdulrahim, Anas & Anık, Ezgi & Ostovan, Yashar & Uzol, Oğuz, 2016. "Effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor," Renewable Energy, Elsevier, vol. 88(C), pages 73-82.
    12. Zhang, Ye & Ramdoss, Varun & Saleem, Zohaib & Wang, Xiaofang & Schepers, Gerard & Ferreira, Carlos, 2019. "Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    2. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    2. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    3. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    4. Elsayed, Ahmed M. & Khalifa, Mohamed A. & Benini, Ernesto & Aziz, Mohamed A., 2023. "Experimental and numerical investigations of aerodynamic characteristics for wind turbine airfoil using multi-suction jets," Energy, Elsevier, vol. 275(C).
    5. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    6. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    7. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
    8. Zhu, Chengyong & Feng, Yi & Shen, Xiang & Dang, Zhigao & Chen, Jie & Qiu, Yingning & Feng, Yanhui & Wang, Tongguang, 2023. "Effects of the height and chordwise installation of the vane-type vortex generators on the unsteady aerodynamics of a wind turbine airfoil undergoing dynamic stall," Energy, Elsevier, vol. 266(C).
    9. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    10. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    11. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).
    12. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    13. Karbasian, Hamid Reza & Esfahani, Javad Abolfazli & Aliyu, Aliyu Musa & Kim, Kyung Chun, 2022. "Numerical analysis of wind turbines blade in deep dynamic stall," Renewable Energy, Elsevier, vol. 197(C), pages 1094-1105.
    14. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    15. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    16. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    17. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    18. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    19. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    20. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.