IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp102-111.html
   My bibliography  Save this article

Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers

Author

Listed:
  • D'Alessandro, Valerio
  • Clementi, Giacomo
  • Giammichele, Luca
  • Ricci, Renato

Abstract

In this work we consider dimples as a possible passive boundary layer control strategy in order to improve the wind turbine blades performance. Due to the complexity of the phenomenon, Large–Eddy Simulation (LES) is here used to analyze the flow field induced by dimples on the NACA 642–014A laminar airfoil operating at Re=1.75⋅105. We have selected a laminar airfoil since this kind of airfoils has been considered as successful solution for modern utility–scale wind turbines. Experimental measurements were also carried out at the Environmental Wind Tunnel of the “Università Politecnica delle Marche” for the sake of validation of our numerical investigations. LES results provided a good agreement with experimental data. It has been shown that dimples application can produce a reduction of the boundary layer separation; additionally, in all the considered cases, dimples reduce the pressure drag coefficient with a consequent increase of the viscous drag coefficient.

Suggested Citation

  • D'Alessandro, Valerio & Clementi, Giacomo & Giammichele, Luca & Ricci, Renato, 2019. "Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers," Energy, Elsevier, vol. 170(C), pages 102-111.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:102-111
    DOI: 10.1016/j.energy.2018.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218324368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montelpare, Sergio & D'Alessandro, Valerio & Zoppi, Andrea & Ricci, Renato, 2018. "Experimental study on a modified Savonius wind rotor for street lighting systems. Analysis of external appendages and elements," Energy, Elsevier, vol. 144(C), pages 146-158.
    2. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    3. Sobhani, Elyas & Ghaffari, Mohammad & Maghrebi, Mohammad Javad, 2017. "Numerical investigation of dimple effects on darrieus vertical axis wind turbine," Energy, Elsevier, vol. 133(C), pages 231-241.
    4. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    5. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    6. Ricci, Renato & Romagnoli, Roberto & Montelpare, Sergio & Vitali, Daniele, 2016. "Experimental study on a Savonius wind rotor for street lighting systems," Applied Energy, Elsevier, vol. 161(C), pages 143-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    2. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    3. Cui, Wenyao & Xiao, Zhixiang & Yuan, Xiangjiang, 2020. "Simulations of transition and separation past a wind-turbine airfoil near stall," Energy, Elsevier, vol. 205(C).
    4. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    5. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    6. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2022. "Influence of blade vibrations on aerodynamic performance of axial compressor in gas turbine: Direct numerical simulation," Energy, Elsevier, vol. 242(C).
    7. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
    8. Nakhchi, M.E. & Naung, S. Win & Dala, L. & Rahmati, M., 2022. "Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations," Renewable Energy, Elsevier, vol. 191(C), pages 669-684.
    9. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    2. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    3. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    4. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    5. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    6. Zhu, Xinyu & Guo, Zhiping & Zhang, Yanfeng & Song, Xiaowen & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Li, Qing'an, 2022. "Numerical study of aerodynamic characteristics on a straight-bladed vertical axis wind turbine with bionic blades," Energy, Elsevier, vol. 239(PE).
    7. Taurista P. Syawitri & Yufeng Yao & Jun Yao & Budi Chandra, 2022. "A review on the use of passive flow control devices as performance enhancement of lift‐type vertical axis wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    8. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    9. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    10. Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
    11. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    12. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    13. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    14. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    15. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    16. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    17. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    18. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    19. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    20. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.