IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v88y2016icp73-82.html
   My bibliography  Save this article

Effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor

Author

Listed:
  • Abdulrahim, Anas
  • Anık, Ezgi
  • Ostovan, Yashar
  • Uzol, Oğuz

Abstract

This paper presents an investigation of the effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor. Experiments are conducted by placing a three-bladed horizontal axis wind turbine rotor at the exit of an open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Measurements of torque and thrust coefficient variations with the Tip Speed Ratio (TSR) as well as wake flow field surveys using Constant Temperature Anemometry are performed with and without tip injection. Results show that power and thrust coefficients both increase due to injection especially at TSR values higher than 3.5. Wake characteristics show a tip flow region that is radially pushed outwards with increased levels of turbulence occupying wider areas compared to the no-injection case. Up to two diameters downstream within the wake, the boundary between the wake and the freestream, which is normally dominated by the presence of the tip vortices, gets more diffused and turbulence levels are significantly increased due to tip injection.

Suggested Citation

  • Abdulrahim, Anas & Anık, Ezgi & Ostovan, Yashar & Uzol, Oğuz, 2016. "Effects of tip injection on the performance and near wake characteristics of a model wind turbine rotor," Renewable Energy, Elsevier, vol. 88(C), pages 73-82.
  • Handle: RePEc:eee:renene:v:88:y:2016:i:c:p:73-82
    DOI: 10.1016/j.renene.2015.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    2. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    3. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:88:y:2016:i:c:p:73-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.