IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics036054422100880x.html
   My bibliography  Save this article

An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles

Author

Listed:
  • Zhang, Yuanjian
  • Liu, Yonggang
  • Huang, Yanjun
  • Chen, Zheng
  • Li, Guang
  • Hao, Wanming
  • Cunningham, Geoff
  • Early, Juliana

Abstract

This paper presents an approach to the design of an optimal control strategy for plug-in hybrid electric vehicles (PHEVs) incorporating Internet of Vehicles (IoVs). The optimal strategy is designed and implemented by employing a mobile edge computing (MEC) based framework for IoVs. The thresholds in the optimal strategy can be instantaneously optimized by chaotic particle swarm optimization with sequential quadratic programming (CPSO-SQP) in the mobile edge computing units (MECUs). The vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication are adopted in IoV to collect traffic information for a CPSO-SQP based optimization and transmit the optimized control commands to vehicle from MECUs. To guarantee real-time optimal performance, the communication delay in V2V and V2I is decreased via an alternative iterative optimization algorithm (AIOA) approach. The simulation results demonstrate the superior performance of the novel optimal control strategy for PHEV with 9% improvement, compared with the original strategy.

Suggested Citation

  • Zhang, Yuanjian & Liu, Yonggang & Huang, Yanjun & Chen, Zheng & Li, Guang & Hao, Wanming & Cunningham, Geoff & Early, Juliana, 2021. "An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s036054422100880x
    DOI: 10.1016/j.energy.2021.120631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100880X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    2. Tian, He & Li, Shengbo Eben & Wang, Xu & Huang, Yong & Tian, Guangyu, 2018. "Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus," Energy, Elsevier, vol. 142(C), pages 55-67.
    3. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    4. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    5. Hongwen, He & Jinquan, Guo & Jiankun, Peng & Huachun, Tan & Chao, Sun, 2018. "Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 95-107.
    6. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    2. Zhang, Baodi & Chang, Liang & Teng, Teng & Chen, Qifang & Li, Qiangwei & Cao, Yaoguang & Yang, Shichun & Zhang, Xin, 2024. "Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 373(C).
    3. Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).
    4. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    6. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    7. Brunelli, Lorenzo & Capancioni, Alessandro & Canè, Stella & Cecchini, Giammarco & Perazzo, Alessandro & Brusa, Alessandro & Cavina, Nicolò, 2023. "A predictive control strategy based on A-ECMS to handle Zero-Emission Zones: Performance assessment and testing using an HiL equipped with vehicular connectivity," Applied Energy, Elsevier, vol. 340(C).
    8. Li, Xinyu & Cao, Yue & Yan, Fei & Li, Yuzhe & Zhao, Wanlin & Wang, Yue, 2022. "Towards user-friendly energy supplement service considering battery degradation cost," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zheng & Gu, Hongji & Shen, Shiquan & Shen, Jiangwei, 2022. "Energy management strategy for power-split plug-in hybrid electric vehicle based on MPC and double Q-learning," Energy, Elsevier, vol. 245(C).
    2. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    4. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    5. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    6. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    7. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    8. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    9. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    10. Zhang, Fengqi & Hu, Xiaosong & Langari, Reza & Wang, Lihua & Cui, Yahui & Pang, Hui, 2021. "Adaptive energy management in automated hybrid electric vehicles with flexible torque request," Energy, Elsevier, vol. 214(C).
    11. Luin, Blaž & Petelin, Stojan & Al-Mansour, Fouad, 2019. "Microsimulation of electric vehicle energy consumption," Energy, Elsevier, vol. 174(C), pages 24-32.
    12. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    13. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    14. Min, Qingyun & Li, Junqiu & Liu, Bo & Li, Jianwei & Sun, Fengchun & Sun, Chao, 2021. "Guided model predictive control for connected vehicles with hybrid energy systems," Energy, Elsevier, vol. 230(C).
    15. Zhou, Wei & Chen, Yaoqi & Zhai, Haoran & Zhang, Weigang, 2021. "Predictive energy management for a plug-in hybrid electric vehicle using driving profile segmentation and energy-based analytical SoC planning," Energy, Elsevier, vol. 220(C).
    16. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    17. Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
    18. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    19. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    20. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s036054422100880x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.