Path signature-based life prognostics of Li-ion battery using pulse test data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.124820
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
- Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
- Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
- Calum Strange & Rasheed Ibraheem & Gonçalo dos Reis, 2023. "Online Lifetime Prediction for Lithium-Ion Batteries with Cycle-by-Cycle Updates, Variance Reduction, and Model Ensembling," Energies, MDPI, vol. 16(7), pages 1-14, April.
- Hong, Joonki & Lee, Dongheon & Jeong, Eui-Rim & Yi, Yung, 2020. "Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning," Applied Energy, Elsevier, vol. 278(C).
- Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
- Ibraheem, Rasheed & Wu, Yue & Lyons, Terry & dos Reis, Gonçalo, 2023. "Early prediction of Lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates," Applied Energy, Elsevier, vol. 352(C).
- Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Minxing & Sun, Xiaofei & Liu, Rui & Wang, Lingzhi & Zhao, Fei & Mei, Xuesong, 2024. "Predict the lifetime of lithium-ion batteries using early cycles: A review," Applied Energy, Elsevier, vol. 376(PA).
- Cai, Hongchang & Tang, Xiaopeng & Lai, Xin & Wang, Yanan & Han, Xuebing & Ouyang, Minggao & Zheng, Yuejiu, 2024. "How battery capacities are correctly estimated considering latent short-circuit faults," Applied Energy, Elsevier, vol. 375(C).
- Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
- Shengyu Tao & Haizhou Liu & Chongbo Sun & Haocheng Ji & Guanjun Ji & Zhiyuan Han & Runhua Gao & Jun Ma & Ruifei Ma & Yuou Chen & Shiyi Fu & Yu Wang & Yaojie Sun & Yu Rong & Xuan Zhang & Guangmin Zhou , 2023. "Collaborative and privacy-preserving retired battery sorting for profitable direct recycling via federated machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Hongao Liu & Chang Li & Xiaosong Hu & Jinwen Li & Kai Zhang & Yang Xie & Ranglei Wu & Ziyou Song, 2025. "Multi-modal framework for battery state of health evaluation using open-source electric vehicle data," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
- Zhai, Qiangxiang & Jiang, Hongmin & Long, Nengbing & Kang, Qiaoling & Meng, Xianhe & Zhou, Mingjiong & Yan, Lijing & Ma, Tingli, 2024. "Machine learning for full lifecycle management of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
- Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Penelope K. Jones & Ulrich Stimming & Alpha A. Lee, 2022. "Impedance-based forecasting of lithium-ion battery performance amid uneven usage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Lin, Mingqiang & Yan, Chenhao & Wang, Wei & Dong, Guangzhong & Meng, Jinhao & Wu, Ji, 2023. "A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance," Energy, Elsevier, vol. 277(C).
- Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
- Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
- Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
- Shengyu Tao & Ruifei Ma & Zixi Zhao & Guangyuan Ma & Lin Su & Heng Chang & Yuou Chen & Haizhou Liu & Zheng Liang & Tingwei Cao & Haocheng Ji & Zhiyuan Han & Minyan Lu & Huixiong Yang & Zongguo Wen & J, 2024. "Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Wang, Shaojin & Tang, Jinrui & Xiong, Binyu & Fan, Junqiu & Li, Yang & Chen, Qihong & Xie, Changjun & Wei, Zhongbao, 2024. "Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries," Energy, Elsevier, vol. 304(C).
- Jiang, Lidang & Li, Zhuoxiang & Hu, Changyan & Chen, Junxiong & Huang, Qingsong & He, Ge, 2024. "A robust adapted Flexible Parallel Neural Network architecture for early prediction of lithium battery lifespan," Energy, Elsevier, vol. 308(C).
- Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
- Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
More about this item
Keywords
Capacity degradation; Hybrid Pulse Power Characterization testing; Path signature methodology; Lithium-ion cells; Explainable machine learning; Remaining useful life; End of life;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924022037. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.