IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018516.html
   My bibliography  Save this article

Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries

Author

Listed:
  • Wang, Shaojin
  • Tang, Jinrui
  • Xiong, Binyu
  • Fan, Junqiu
  • Li, Yang
  • Chen, Qihong
  • Xie, Changjun
  • Wei, Zhongbao

Abstract

Frequency response analysis (FRA) methods are commonly used in the field of State of Health (SOH) estimation for Lithium-ion batteries (Libs). However, identifying their appropriate application scenarios can be challenging. This paper presents four FRA techniques, including electrochemical impedance spectra (EIS), mid-frequency and low-frequency domain equivalent circuit model (MLECM), distribution of relaxation time (DRT) and non-linear FRA (NFRA) technique. This paper proposes two estimation frameworks, machine learning and curve fitting, to be applied to each of the four techniques. Eight SOH estimation models are developed by linking the extracted feature parameters to the battery capacity variations. The paper compares the accuracy of estimation, estimation range, and other properties of the eight models. Application scenarios are identified for the techniques by using three classification methods: different estimation frameworks, frequency response linearity, and impedance technique. The results demonstrate that MLF is recommended for scenarios with a large amount of battery data, while CFF is recommended for scenarios with a small amount of data. NFRA could be applied to electric vehicle power batteries, while LFRA is recommended to be used for retired batteries. EIS method is recommended for complex and dynamic scenarios, while non-EIS method is recommended for scenarios that require high accuracy.

Suggested Citation

  • Wang, Shaojin & Tang, Jinrui & Xiong, Binyu & Fan, Junqiu & Li, Yang & Chen, Qihong & Xie, Changjun & Wei, Zhongbao, 2024. "Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018516
    DOI: 10.1016/j.energy.2024.132077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.