IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023969.html
   My bibliography  Save this article

State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression

Author

Listed:
  • Zhou, Yong
  • Dong, Guangzhong
  • Tan, Qianqian
  • Han, Xueyuan
  • Chen, Chunlin
  • Wei, Jingwen

Abstract

Due to lithium-ion batteries’ complex behaviors, accurate estimation of state-of-health is still a critical challenge in battery systems’ prognosis and health management. Most existing efforts in battery health prognosis focus on feature engineering using low-frequency sampled time-domain response. These efforts may not completely reflect the battery health status in automotive applications due to information missing in the high or medium frequency range. This paper proposes a data-driven state-of-health estimation method using high and medium frequency range impedance spectroscopy data. First, battery health indicators are extracted from electrochemical impedance spectroscopy data. It is found that the Nyquist diagram shows semicircle characteristics at high and medium frequency ranges. The center and radius of this circle show high dependence on battery health. Then, a recurrent Gaussian process regression with a one-step delay feedback loop is designed to provide a smooth and accurate battery state-of-health estimate. Finally, the proposed health indicators and state-of-health estimators are validated using experimental data on different cells. The results demonstrate the high accuracy and robustness of the proposed health indicators and state-of-health estimator, suggesting a 1.12% estimation error. This study shows the prospect of health prognosis using robust geometric impedance spectrum indicators in energy storage systems.

Suggested Citation

  • Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023969
    DOI: 10.1016/j.energy.2022.125514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Mingant, R. & Bernard, J. & Sauvant-Moynot, V., 2016. "Novel state-of-health diagnostic method for Li-ion battery in service," Applied Energy, Elsevier, vol. 183(C), pages 390-398.
    3. Chen, Jianhong & Zhang, Youlang & Li, Xinzhou & Sun, Bo & Liao, Qiangqiang & Tao, Yibin & Wang, Zhiqin, 2020. "Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai," Applied Energy, Elsevier, vol. 263(C).
    4. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    5. Jing Xie & Yi-Chun Lu, 2020. "A retrospective on lithium-ion batteries," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    6. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    7. Babaeiyazdi, Iman & Rezaei-Zare, Afshin & Shokrzadeh, Shahab, 2021. "State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach," Energy, Elsevier, vol. 223(C).
    8. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    9. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    10. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    11. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    12. Su, Xiaojia & Sun, Bingxiang & Wang, Jiaju & Zhang, Weige & Ma, Shichang & He, Xitian & Ruan, Haijun, 2022. "Fast capacity estimation for lithium-ion battery based on online identification of low-frequency electrochemical impedance spectroscopy and Gaussian process regression," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Antonio & Monsalve-Serrano, Javier & Ponce-Mora, Alberto & Fogué-Robles, Álvaro, 2023. "Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles," Energy, Elsevier, vol. 271(C).
    2. Bao, Zhengyi & Nie, Jiahao & Lin, Huipin & Jiang, Jiahao & He, Zhiwei & Gao, Mingyu, 2023. "A global–local context embedding learning based sequence-free framework for state of health estimation of lithium-ion battery," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    2. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    3. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    4. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    5. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    7. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    8. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    9. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Wang, Jinyu & Zhang, Caiping & Zhang, Linjing & Su, Xiaojia & Zhang, Weige & Li, Xu & Du, Jingcai, 2023. "A novel aging characteristics-based feature engineering for battery state of health estimation," Energy, Elsevier, vol. 273(C).
    12. Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
    13. Buchicchio, Emanuele & De Angelis, Alessio & Santoni, Francesco & Carbone, Paolo & Bianconi, Francesco & Smeraldi, Fabrizio, 2023. "Battery SOC estimation from EIS data based on machine learning and equivalent circuit model," Energy, Elsevier, vol. 283(C).
    14. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
    15. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
    16. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Fan, Guodong & Zhang, Xi, 2023. "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network," Applied Energy, Elsevier, vol. 330(PA).
    18. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    19. Kim, Seongyoon & Choi, Yun Young & Choi, Jung-Il, 2022. "Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network," Applied Energy, Elsevier, vol. 308(C).
    20. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.