Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119881
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Biondi, Alfonso & Toro, Claudia, 2019. "Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis," Energy, Elsevier, vol. 181(C), pages 793-802.
- Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
- Toro, Claudia & Lior, Noam, 2017. "Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation," Energy, Elsevier, vol. 120(C), pages 549-564.
- Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
- Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
- Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
- Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
- Kestin, J. & Khalifa, H.E. & Wakeham, W.A., 1978. "The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 90(2), pages 215-228.
- Costante Mario Invernizzi, 2017. "Prospects of Mixtures as Working Fluids in Real-Gas Brayton Cycles," Energies, MDPI, vol. 10(10), pages 1-15, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).
- Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
- Zijian Sun & Haochun Zhang & Qiqi Sun & Cheng Zhang, 2023. "Comprehensive Thermodynamic Analysis of He–Xe in Microchannels with Different Structures," Energies, MDPI, vol. 16(8), pages 1-33, April.
- Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
- Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jingkang & Hu, Zunyan & Jiang, Hongsheng & Guo, Yuchuan & Li, Zeguang & Zhuge, Weilin & Xu, Liangfei & Li, Jianqiu & Ouyang, Minggao, 2023. "Coupled characteristics and performance of heat pipe cooled reactor with closed Brayton cycle," Energy, Elsevier, vol. 280(C).
- Vedran Mrzljak & Igor Poljak & Maro Jelić & Jasna Prpić-Oršić, 2023. "Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads," Energies, MDPI, vol. 16(15), pages 1-26, July.
- Abubakr Ayub & Costante M. Invernizzi & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2020. "Carbon Dioxide Mixtures as Working Fluid for High-Temperature Heat Recovery: A Thermodynamic Comparison with Transcritical Organic Rankine Cycles," Energies, MDPI, vol. 13(15), pages 1-18, August.
- Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
- Hu, Dinghua & Li, Mengmeng & Li, Qiang, 2021. "A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis," Energy, Elsevier, vol. 223(C).
- Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
- Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
- Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
- Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
- Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
- Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
- Hao Yu & Xinli Lu & Wei Zhang & Jiali Liu, 2024. "Thermodynamic Analysis of an Increasing-Pressure Endothermic Power Cycle Integrated with Closed-Loop Geothermal Energy Extraction," Energies, MDPI, vol. 17(7), pages 1-23, April.
- Ge, Yanlin & Wu, Heng & Chen, Lingen & Feng, Huijun & Xie, Zhihui, 2023. "Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle," Energy, Elsevier, vol. 270(C).
- Kunlin Cheng & Jiahui Li & Jianchi Yu & Jiang Qin & Wuxing Jing, 2023. "Dynamic Characteristics Analysis for a Novel Double-Rotor He-Xe Closed-Brayton-Cycle Space Nuclear Power Generation System," Energies, MDPI, vol. 16(18), pages 1-20, September.
- Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
- Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
- Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
- Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).
- Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Performance optimization of diffusive mass transfer law irreversible isothermal chemical pump," Energy, Elsevier, vol. 263(PC).
More about this item
Keywords
CBC; Helium-xenon; Physical property parameters; Non-ideal gas; Space nuclear reactors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221001304. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.