IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221003327.html
   My bibliography  Save this article

A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis

Author

Listed:
  • Hu, Dinghua
  • Li, Mengmeng
  • Li, Qiang

Abstract

Continuous energy supply is crucial to the crew and assets of lunar outposts during the darkness lunar night of 350 h in the long term lunar exploration. A solar energy storage power generation system based on in-situ resource utilization (ISRU) is established and analyzed. An efficient linear Fresnel collector is configured for solar concentration. The thermal energy reservoir (TER) coupling with Stirling power generator is designed using the fuel tanks of descent module and lunar regolith. A comprehensively theoretical model based on finite time thermodynamics is developed to analyze the energy flow and efficiency of thermal storage power generation system, and the major irreversibilities are taken into account. The results show that the designed system can produce an average power of 6.5 kW during the lunar night with 19.6% utilization efficiency of collected solar energy in the daytime. The evaluated launch mass of designed power system has a competitive advantage than those of nuclear reactor power and photovoltaic-battery power systems. The influences of major heat transfer processes including heat leakage of TER, heat exchange capability of Stirling engine and radiator are also discussed, which provides physical insight for optimal design of future power generation system based on ISRU.

Suggested Citation

  • Hu, Dinghua & Li, Mengmeng & Li, Qiang, 2021. "A solar thermal storage power generation system based on lunar in-situ resources utilization: modeling and analysis," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003327
    DOI: 10.1016/j.energy.2021.120083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xiaochen & Ma, Rong & Wang, Chao & Yao, Wei, 2016. "Performance analysis of a lunar based solar thermal power system with regolith thermal storage," Energy, Elsevier, vol. 107(C), pages 227-233.
    2. Toro, Claudia & Lior, Noam, 2017. "Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation," Energy, Elsevier, vol. 120(C), pages 549-564.
    3. Delgado-Bonal, Alfonso & Martín-Torres, F. Javier & Vázquez-Martín, Sandra & Zorzano, María-Paz, 2016. "Solar and wind exergy potentials for Mars," Energy, Elsevier, vol. 102(C), pages 550-558.
    4. Yaqi, Li & Yaling, He & Weiwei, Wang, 2011. "Optimization of solar-powered Stirling heat engine with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 36(1), pages 421-427.
    5. Zidanšek, Aleksander & Ambrožič, Milan & Milfelner, Maja & Blinc, Robert & Lior, Noam, 2011. "Solar orbital power: Sustainability analysis," Energy, Elsevier, vol. 36(4), pages 1986-1995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tailin, Li & Youhong, Liu & Yingzeng, Zhang & Haodong, Chen & Qingpei, Xiang & Jun, Zeng & Rende, Ze & Yi, Liu & Yongchun, Xiang, 2023. "Comprehensive modeling and characterization of Chang'E-4 radioisotope thermoelectric generator for lunar mission," Applied Energy, Elsevier, vol. 336(C).
    2. Zhang, Chong & Shi, Lingfeng & Pei, Gang & Yao, Yu & Li, Kexin & Zhou, Shuo & Shu, Gequn, 2023. "Thermodynamic analysis of combined heating and power system with In-Situ resource utilization for lunar base," Energy, Elsevier, vol. 284(C).
    3. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    4. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    5. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    6. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    2. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).
    3. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    4. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2014. "Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines," Energy, Elsevier, vol. 69(C), pages 873-890.
    5. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    6. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    7. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    8. Tailin, Li & Youhong, Liu & Yingzeng, Zhang & Haodong, Chen & Qingpei, Xiang & Jun, Zeng & Rende, Ze & Yi, Liu & Yongchun, Xiang, 2023. "Comprehensive modeling and characterization of Chang'E-4 radioisotope thermoelectric generator for lunar mission," Applied Energy, Elsevier, vol. 336(C).
    9. Piotr Pałka & Robert Olszewski & Agnieszka Wendland, 2022. "Using Spatial Data Science in Energy-Related Modeling of Terraforming the Martian Atmosphere," Energies, MDPI, vol. 15(14), pages 1-24, July.
    10. Jose Egas & Don M. Clucas, 2018. "Stirling Engine Configuration Selection," Energies, MDPI, vol. 11(3), pages 1-22, March.
    11. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
    12. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    13. Pakrouh, R. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2017. "Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model," Energy, Elsevier, vol. 140(P1), pages 861-878.
    14. Song, Hongqing & Zhang, Jie & Ni, Dongdong & Sun, Yueqiang & Zheng, Yongchun & Kou, Jue & Zhang, Xianguo & Li, Zhengyi, 2021. "Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole," Applied Energy, Elsevier, vol. 298(C).
    15. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    16. Leverone, Fiona & Pini, Matteo & Cervone, Angelo & Gill, Eberhard, 2020. "Solar energy harvesting on-board small satellites," Renewable Energy, Elsevier, vol. 159(C), pages 954-972.
    17. Babaelahi, Mojtaba & Sayyaadi, Hoseyn, 2016. "Analytical closed-form model for predicting the power and efficiency of Stirling engines based on a comprehensive numerical model and the genetic programming," Energy, Elsevier, vol. 98(C), pages 324-339.
    18. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    19. Behzad ranjbar, & Mehrpooya, Mehdi & Marefati, Mohammad, 2021. "Parametric design and performance evaluation of a novel solar assisted thermionic generator and thermoelectric device hybrid system," Renewable Energy, Elsevier, vol. 164(C), pages 194-210.
    20. Hooshang, M. & Askari Moghadam, R. & Alizadeh Nia, S. & Masouleh, M. Tale, 2015. "Optimization of Stirling engine design parameters using neural networks," Renewable Energy, Elsevier, vol. 74(C), pages 855-866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.