IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223019850.html
   My bibliography  Save this article

Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system

Author

Listed:
  • Kardaś, Dariusz
  • Polesek-Karczewska, Sylwia
  • Turzyński, Tomasz
  • Wardach-Święcicka, Izabela
  • Hercel, Paulina
  • Szymborski, Jakub
  • Heda, Łukasz

Abstract

Externally-fired gas turbine (EFGT) has been considered an option in variable combined heat and power energy systems. The key elements in such systems are the high-temperature heat exchangers (HTHE), in which the working fluid (typically air) is heated by flue gas. Since both flows are separated, the solution is considered advantageous for utilization of biomass featuring high levels of particulate matter emissions. An increased interest in these devices has therefore been observed along with the development of small-scale CHP units utilizing locally available biomass. The effectiveness of HTHE, along with the inlet turbine temperature, appears to be one of the main factors influencing the efficiency of EFGT-based systems. Numerous studies on the HTHE designs have been carried out, basically focusing on the use of high-temperature resistant materials to provide safe conditions for long-term operation under elevated temperatures. There is a lack of research considering other methods to improve the effectiveness of the HTHE. The paper presents the analysis of thermal performance of the laboratory-scale 20 kW red-hot air furnace to demonstrate the HTHE effectiveness enhancement by adding water to airflow. The experimental results showed a significant increase (by almost 45%) in the heat exchanger effectiveness for the case of ∼10%wt. water addition. This is due to the enhanced heat capacity of a cooling medium and its absorption properties that results from the steam content. The proposed method for effectiveness increment appears to be beneficial to compensate for the low effectiveness of air-to-fumes tube HTHE.

Suggested Citation

  • Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223019850
    DOI: 10.1016/j.energy.2023.128591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Bellis, Fabio & Catalano, Luciano A., 2012. "CFD optimization of an immersed particle heat exchanger," Applied Energy, Elsevier, vol. 97(C), pages 841-848.
    2. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    3. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    4. Al-attab, K.A. & Zainal, Z.A., 2010. "Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems," Renewable Energy, Elsevier, vol. 35(5), pages 913-920.
    5. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    6. Mauricio Bustamante & Abraham Engeda & Wei Liao, 2021. "Small-Scale Solar–Bio-Hybrid Power Generation Using Brayton and Rankine Cycles," Energies, MDPI, vol. 14(2), pages 1-16, January.
    7. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
    8. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    9. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    10. Cocco, Daniele & Deiana, Paolo & Cau, Giorgio, 2006. "Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers," Energy, Elsevier, vol. 31(10), pages 1459-1471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Meng & Li, Haiwang & You, Ruquan & Kong, Weidi & Tao, Zhi, 2024. "Experimental research on high-temperature radiation characteristics of film-cooled plate of gas turbines," Energy, Elsevier, vol. 303(C).
    2. Bollas, Konstantinos & Banihabib, Reyhaneh & Assadi, Mohsen & Kalfas, Anestis, 2024. "Optimal operating scenario and performance comparison of biomass-fueled externally-fired microturbine," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-attab, K.A. & Zainal, Z.A., 2015. "Externally fired gas turbine technology: A review," Applied Energy, Elsevier, vol. 138(C), pages 474-487.
    2. Vera, David & Jurado, Francisco & Carpio, José & Kamel, Salah, 2018. "Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry," Energy, Elsevier, vol. 144(C), pages 41-53.
    3. David Vera & Francisco Jurado & Bárbara de Mena & Jesús C. Hernández, 2019. "A Distributed Generation Hybrid System for Electric Energy Boosting Fueled with Olive Industry Wastes," Energies, MDPI, vol. 12(3), pages 1-18, February.
    4. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    5. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    7. Bollas, Konstantinos & Banihabib, Reyhaneh & Assadi, Mohsen & Kalfas, Anestis, 2024. "Optimal operating scenario and performance comparison of biomass-fueled externally-fired microturbine," Energy, Elsevier, vol. 296(C).
    8. Iora, P. & Silva, P., 2013. "Innovative combined heat and power system based on a double shaft intercooled externally fired gas cycle," Applied Energy, Elsevier, vol. 105(C), pages 108-115.
    9. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    10. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    11. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    12. De Paepe, Ward & Montero Carrero, Marina & Bram, Svend & Contino, Francesco & Parente, Alessandro, 2017. "Waste heat recovery optimization in micro gas turbine applications using advanced humidified gas turbine cycle concepts," Applied Energy, Elsevier, vol. 207(C), pages 218-229.
    13. J. Villarroel-Schneider & Anders Malmquist & Joseph A. Araoz & J. Martí-Herrero & Andrew Martin, 2019. "Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine," Energies, MDPI, vol. 12(20), pages 1-30, October.
    14. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    15. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    16. de Mello, Paulo Eduardo Batista & Monteiro, Deiglys Borges, 2012. "Thermodynamic study of an EFGT (externally fired gas turbine) cycle with one detailed model for the ceramic heat exchanger," Energy, Elsevier, vol. 45(1), pages 497-502.
    17. Faustino Moreno-Gamboa & Ana Escudero-Atehortua & César Nieto-Londoño, 2022. "Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle," Sustainability, MDPI, vol. 14(15), pages 1-24, August.
    18. Di Gregorio, F. & Zaccariello, Lucio, 2012. "Fluidized bed gasification of a packaging derived fuel: energetic, environmental and economic performances comparison for waste-to-energy plants," Energy, Elsevier, vol. 42(1), pages 331-341.
    19. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    20. Anwar Hamdan Al Assaf & Abdulkarem Amhamed & Odi Fawwaz Alrebei, 2022. "State of the Art in Humidified Gas Turbine Configurations," Energies, MDPI, vol. 15(24), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223019850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.