IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics036054422400269x.html
   My bibliography  Save this article

Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle

Author

Listed:
  • Ma, Wenkui
  • Ye, Ping
  • Gao, Yue
  • Hao, Yadong
  • Yang, Xiaoyong

Abstract

Space exploration technology is an important indicator of society's technological level. A space reactor coupled with a Brayton cycle is preferable for megawatt-scale space power systems. Noble gas binary mixtures have high chemical stability, heat transfer performance, and compressibility, making them the principal choice of working fluid for the space reactor Brayton cycle, which is also the key factor affecting the thermodynamic performance and mass of the system. This study developed thermodynamic performance and mass evaluation models for the space nuclear Brayton cycle and discovered the inherent relationship between system thermodynamic performance and mass. The effects of noble gas binary mixtures on system performance and mass were investigated. The results indicated that the elevated molar mass of noble gas binary mixtures reduced the aerodynamic load and mass of the turbomachines and increased the mass of the recuperator. There are optimal values of the total mass, specific mass of the system, and working fluid composition. Helium-xenon mixture is the optimal working fluid because it can achieve the highest thermodynamic efficiency and lowest mass. Furthermore, the optimal scheme of the helium-xenon Brayton cycle for a space nuclear power system was obtained by multi-objective optimization. Its power generation efficiency, specific mass, and helium molar fraction in the helium-xenon working fluid are 29.04%, 5.65 t∙MW−1 and 77.5%, respectively. This study provides a reference for the design and optimization of space nuclear power systems.

Suggested Citation

  • Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400269x
    DOI: 10.1016/j.energy.2024.130498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400269X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    2. Biondi, Alfonso & Toro, Claudia, 2019. "Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis," Energy, Elsevier, vol. 181(C), pages 793-802.
    3. Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).
    4. Li, Jingkang & Hu, Zunyan & Jiang, Hongsheng & Guo, Yuchuan & Li, Zeguang & Zhuge, Weilin & Xu, Liangfei & Li, Jianqiu & Ouyang, Minggao, 2023. "Coupled characteristics and performance of heat pipe cooled reactor with closed Brayton cycle," Energy, Elsevier, vol. 280(C).
    5. Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
    6. Kestin, J. & Khalifa, H.E. & Wakeham, W.A., 1978. "The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 90(2), pages 215-228.
    7. Sun, Qi-qi & Zhang, Hao-chun & Sun, Zi-jian & Xia, Yan, 2023. "Thermodynamic analysis of potassium Rankine cycle in space nuclear power by energy analysis and exergy analysis," Energy, Elsevier, vol. 273(C).
    8. Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
    9. Miao, Xinyu & Zhang, Haochun & Sun, Wenbo & Wang, Qi & Zhang, Chenxu, 2022. "Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chengxuan & Yang, Xiao & Yu, Jie & Yang, Minghan & Wang, Jianye & Chen, Shuai, 2023. "Interval type-2 fuzzy logic control for a space nuclear reactor core power system," Energy, Elsevier, vol. 280(C).
    2. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    3. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    4. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    5. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
    7. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    8. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    9. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    10. Xu, Chi & Kong, Fanli & Yu, Dali & Yu, Jie & Khan, Muhammad Salman, 2021. "Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system," Energy, Elsevier, vol. 222(C).
    11. Xinyu Miao & Haochun Zhang & Qi Wang & Wenbo Sun & Yan Xia, 2022. "Thermodynamic, Exergoeconomic and Multi-Objective Analyses of Supercritical N 2 O-He Recompression Brayton Cycle for a Nuclear Spacecraft Application," Energies, MDPI, vol. 15(21), pages 1-31, November.
    12. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    13. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    14. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    15. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    16. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    17. Ma, Teng & Li, Ming-Jia & Xu, Jin-Liang & Cao, Feng, 2019. "Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant," Energy, Elsevier, vol. 175(C), pages 123-138.
    18. Pan, Lisheng & Ma, Yuejing & Li, Teng & Li, Huixin & Li, Bing & Wei, Xiaolin, 2019. "Investigation on the cycle performance and the combustion characteristic of two CO2-based binary mixtures for the transcritical power cycle," Energy, Elsevier, vol. 179(C), pages 454-463.
    19. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    20. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400269x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.